
CROCO  
Code development organization 

& Testing strategy  
 

Gildas Cambon (IRD, Laboratoire d’Océanographie Physique et Spatiale) - gildas.cambon@ird.fr  
Solène Le Gac (Ifremer, Laboratoire de Dynamique Hydrosédimentaire) - solene.le.gac@ifremer.fr

CROCO dev meeting – Toulouse – juillet 2024 1

Summary

●Code development organization
■ Mailing list, chat room, website, forum
■ Git / Gitlab
■ Git workflow
■ Coding tips to remember

●Testing strategy
■ Testing in the current CROCO
■ Testing in the future

2CROCO dev meeting – Toulouse – juillet 2024

CROCO - Code development organization  

3CROCO dev meeting – Toulouse – juillet 2024

● Existing mailing lists :

○ COPIL : croco-copil@inria.fr

○ Developers (people who have committed) : croco-devs@inria.fr

○ Log (to organize monthly meetings) : croco-log@inria.fr

○ Users : croco-users@inria.fr

● Chat room : https://mattermost.inria.fr/croco-dev/

● Web site : https://www.croco-ocean.org/

● Gitlab : https://gitlab.inria.fr/croco-ocean

○ Several repositories, including 3 public ones : croco, croco_tools, croco_pytools

○ Wiki : https://gitlab.inria.fr/croco-ocean/croco/-/wikis/home

● User forum : https://forum.croco-ocean.org/

mailto:croco-copil@inria.fr
mailto:croco-devs@inria.fr
mailto:croco-log@inria.fr
mailto:croco-users@inria.fr
https://mattermost.inria.fr/croco-dev/
https://www.croco-ocean.org/
https://gitlab.inria.fr/croco-ocean
https://gitlab.inria.fr/croco-ocean/croco/-/wikis/home
https://forum.croco-ocean.org/

CROCO - Code development organization  

Based on Git and Gitlab :

4CROCO dev meeting – Toulouse – juillet 2024

Git with remote

Download on public access :

https://gitlab.inria.fr/croco-ocean/croco

Developper access : request to register
to croco-gitlab-register@inria.fr

https://gitlab.inria.fr/croco-ocean/croco

CROCO – Git Workflow

5CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git Workflow … concretely

6CROCO dev meeting – Toulouse – juillet 2024

See WIKI page : https://gitlab.inria.fr/croco-ocean/croco/-/wikis/dev_guide/Workflow

Protected branches : master and release*

Updated by a Merge Request (MR), only "maintainers" can finally validate the MR

ALL developments must be done in a dedicated branch

	 no commits directly in protected branches (master or release*)

https://gitlab.inria.fr/croco-ocean/croco/-/wikis/dev_guide/Workflow

CROCO – Coding tips 

7CROCO dev meeting – Toulouse – juillet 2024

About commit message…

CROCO – Coding tips 

8CROCO dev meeting – Toulouse – juillet 2024

About commit message, good practice :

Capitalized, short (50 chars or less) summary

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so.

Write your commit message in the imperative: "Fix bug" and not
"Fixed bug" or "Fixes bug."

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, followed
by a single space, with blank lines in between

CROCO – Coding tips 

9CROCO dev meeting – Toulouse – juillet 2024

About commits squashing :

- a common practice in Git to combine multiple commits into one

- it is often done to clean up commit history before merging into the main branch.

CROCO – Coding tips 

9CROCO dev meeting – Toulouse – juillet 2024

About commits squashing :

- a common practice in Git to combine multiple commits into one

- it is often done to clean up commit history before merging into the main branch.

CROCO – Git workflow , important things to remember 

10CROCO dev meeting – Toulouse – juillet 2024

• If you find a bug, report it in an ISSUE

• If you want to treat a bug, create a BRANCH, fix it and open a MERGE REQUEST. Do not
forget to link with the dedicated issue

• If you want to develop a feature, create a BRANCH, work on it and finally open a MERGE
REQUEST to integrate it. If the work takes long, do not forget to SYNCHRONIZE with a GIT
MERGE MASTER

• Do not forget to update DOCUMENTATION about your code

• Do not forget to TEST your code

CROCO – Git workflow : Issues 

11CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow : Issues 

11CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow : Issues 

11CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow : Issues 

11CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow : Issues 

11CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow : Issues 

11CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow : Issues 

11CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow , important things to remember 

12CROCO dev meeting – Toulouse – juillet 2024

• If you find a bug, report it in an ISSUE

• If you want to treat a bug, create a BRANCH, fix it and open a MERGE REQUEST. Do not
forget to link with the dedicated issue

• If you want to develop a feature, create a BRANCH, work on it and finally open a MERGE
REQUEST to integrate it. If the work takes long, do not forget to SYNCHRONIZE with a GIT
MERGE MASTER

• Do not forget to update DOCUMENTATION about your code

• Do not forget to TEST your code

CROCO – Git workflow : Issues and branch creation 

13CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow : Issues and branch creation 

13CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow : Issues and branch creation 

13CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow : Issues and branch creation 

13CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow : Issues and branch creation 

13CROCO dev meeting – Toulouse – juillet 2024

You can change name

CROCO – Git workflow : Issues and branch creation 

13CROCO dev meeting – Toulouse – juillet 2024

You can change name

CROCO – Git workflow : Issues and branch creation 

13CROCO dev meeting – Toulouse – juillet 2024

Work in branch 194-bug-into-toto-f

You can change name

CROCO – Git workflow : Issues and branch creation 

14CROCO dev meeting – Toulouse – juillet 2024

Work on branch 194-bug-into-toto-f ….

CROCO – Git workflow : Issues and branch creation 

14CROCO dev meeting – Toulouse – juillet 2024

Work on branch 194-bug-into-toto-f ….

CROCO – Git workflow : merge request 

15

Work on branch 194-bug-into-toto-f is finished

CROCO – Git workflow : merge request 

15

Work on branch 194-bug-into-toto-f is finished

Now merge request into master and release …

CROCO – Git workflow : merge request 

15

Work on branch 194-bug-into-toto-f is finished

Now merge request into master and release …

CROCO – Git workflow : merge request 

15

Work on branch 194-bug-into-toto-f is finished

Now merge request into master and release …

The process of propagating your commit into another branch

=> master and release branches to be useful for others

CROCO – Git workflow : merge request 

15

Work on branch 194-bug-into-toto-f is finished

Now merge request into master and release …

The process of propagating your commit into another branch

=> master and release branches to be useful for others

CROCO – Git workflow : merge request 

15

Work on branch 194-bug-into-toto-f is finished

Now merge request into master and release …

The process of propagating your commit into another branch

=> master and release branches to be useful for others

CROCO – Git workflow : merge request 

16

CROCO – Git workflow : merge request 

16

CROCO – Git workflow : merge request 

16

CROCO – Git workflow : merge request 

16

CROCO – Git workflow : merge request 

16

CROCO – Git workflow : merge request 

16

CROCO – Git workflow : merge request 

16

CROCO – Git workflow : merge request 

16

CROCO – Git workflow : merge request 

16

CROCO – Git workflow : merge request 

16

CROCO – Git workflow , important things to remember 

17CROCO dev meeting – Toulouse – juillet 2024

• If you find a bug, report it in an ISSUE

• If you want to treat a bug, create a BRANCH, fix it and open a MERGE REQUEST. Do not
forget to link with the dedicated issue

• If you want to develop a feature, create a BRANCH, work on it and finally open a MERGE
REQUEST to integrate it. If the work takes long, do not forget to SYNCHRONIZE with a GIT
MERGE MASTER

• Do not forget to update DOCUMENTATION about your code

• Do not forget to TEST your code

CROCO – Git workflow , important things to remember 

18CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow , important things to remember 

18CROCO dev meeting – Toulouse – juillet 2024

CROCO – Git workflow , important things to remember 

19CROCO dev meeting – Toulouse – juillet 2024

• If you find a bug, report it in an ISSUE

• If you want to treat a bug, create a BRANCH, fix it and open a MERGE REQUEST. Do not
forget to link with the dedicated issue

• If you want to develop a feature, create a BRANCH, work on it and finally open a MERGE
REQUEST to integrate it. If the work takes long, do not forget to SYNCHRONIZE with a GIT
MERGE MASTER

• Do not forget to update DOCUMENTATION about your code

• Do not forget to TEST your code

CROCO – TESTING STRATEGY 

20CROCO dev meeting – Toulouse – juillet 2024

Why testing ?

• Help to identify and fix bugs early on in the
development process

• Make CROCO more reliable

• Ensure portability (ex : different compilers)

CROCO – TESTING STRATEGY 

21CROCO dev meeting – Toulouse – juillet 2024

Different types of tests for different purposes

• Functional testing

• Non-functional tests (compatibility, compliance,
non-regression, performance)

CROCO – TESTING STRATEGY 

22CROCO dev meeting – Toulouse – juillet 2024

In the current CROCO, tests are based on TEST-CASES defined by cppkey

Currently :

● 33 "schematic configurations"

● 2 realistic configurations (REGIONAL, COASTAL)

Tests are carried out :

● Manually by each developer to ensure the effects of code changes

● Automattically using gitlab-CI and RVTK cppkeys , based on bash scripts

○ Check parallel reproductibility for OPENMP and MPI

○ Check compilation on 2 compilers : gfortran and ifort (env from Docker containers)

○ 27 schematic and 1 realistic configurations tested

CROCO – TESTING STRATEGY 

23CROCO dev meeting – Toulouse – juillet 2024

How can I find out about
automatic tests?

● See file .gitlab-ci.yml

● See Build menu in

gitlab

CROCO – TESTING STRATEGY 

24CROCO dev meeting – Toulouse – juillet 2024

Limitations, areas for improvement ...

● No consistency in manual testing : poor traceability

due to lack of history, everyone does what they want

● Very time consuming manual tests, automation to

be rebuilt : 
But … little flexibility in bash scripts

+

● No checking on physical results

● No test report

● Push tests took ~1h30, scheduled tests ~4h

● Unknown code coverage

We should do something !!!

CROCO – TESTING STRATEGY 

25CROCO dev meeting – Toulouse – juillet 2024

BENCH python script developped by Sebastien Vallat :

● Automated bench script to handle various versions of configurations

● Dedicated branch : for-team/proposal-master-bench

● Minimalist usage,  

example :

https://gitlab.inria.fr/croco-ocean/croco/-/tree/for-team/proposal-master-bench?ref_type=heads

CROCO – TESTING STRATEGY FUTURE PLANS 

26CROCO dev meeting – Toulouse – juillet 2024

Goals : add flexibility

● Not all tests will be run in the same way: some will be run on every push, others on

schedule, and others only by the local user

● Rules may be different for the master and release branches than for the other

branches

● Keep push tests as light as possible, while enabling problems to be reported quickly

(by running bench_croco.py locally)

CROCO – TESTING STRATEGY FUTURE PLANS 

27CROCO dev meeting – Toulouse – juillet 2024

How ??

Categorize tests by :

● Debug - functional: compile and run a list of test cases, compilers and options

● Performance: compare test case computation times

● Reproducibility: compare results with the sequential case to detect non-reproducibility

("simple" repro test and the "RVTK" repro using binaries).

● Regression: compare results with a previously obtained reference version and generate

associated plots

Test case types :

● analytical (no need of input files),

● semi-analytical/realistic (need of input files)

CROCO – TESTING STRATEGY FUTURE PLANS 

28CROCO dev meeting – Toulouse – juillet 2024

Implementation schedule for CROCO : 	 release end 2024

STEP 1: first set-up stage with 2 test cases: BASIN and BENGUELA

Step-by-step implementation:

● Debug-functional testing

● Repro-simple testing (level of -O to be defined)

● Repro-RVTK tests (be careful to modify the number of dt, USE_CALENDAR case)

● Perf tests (std and optim)

● Regression test

STEP 2: addition of the other test cases and adding rules for CI

CROCO – TESTING STRATEGY FUTURE PLANS 

29CROCO dev meeting – Toulouse – juillet 2024

First implementation in gitlab-ci for
BASIN test case in 
for-team/proposal-master-bench

branch

https://gitlab.inria.fr/croco-ocean/croco/-/tree/for-team/proposal-master-bench?ref_type=heads

