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Summary

●Code development organization 
■ Mailing list, chat room, website, forum
■ Git / Gitlab 
■ Git workflow
■ Coding tips to remember

●Testing strategy
■ Testing in the current CROCO
■ Testing in the future
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CROCO - Code development organization  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● Existing mailing lists :

○ COPIL :  croco-copil@inria.fr

○ Developers (people who have committed) : croco-devs@inria.fr

○ Log (to organize monthly meetings) : croco-log@inria.fr

○ Users : croco-users@inria.fr


● Chat room : https://mattermost.inria.fr/croco-dev/


● Web site : https://www.croco-ocean.org/ 


● Gitlab : https://gitlab.inria.fr/croco-ocean 

○ Several repositories, including 3 public ones : croco, croco_tools, croco_pytools

○ Wiki : https://gitlab.inria.fr/croco-ocean/croco/-/wikis/home 


● User forum : https://forum.croco-ocean.org/ 
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CROCO - Code development organization  

Based on Git and Gitlab : 
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Git with remote

Download on public access :

https://gitlab.inria.fr/croco-ocean/croco


Developper access : request to register 
to croco-gitlab-register@inria.fr


https://gitlab.inria.fr/croco-ocean/croco


CROCO – Git Workflow
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CROCO – Git Workflow … concretely
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See WIKI page : https://gitlab.inria.fr/croco-ocean/croco/-/wikis/dev_guide/Workflow


Protected branches : master and release*

Updated by a Merge Request (MR), only "maintainers" can finally validate the MR


ALL developments must be done in a dedicated branch

	     no commits directly in protected branches (master or release*)

https://gitlab.inria.fr/croco-ocean/croco/-/wikis/dev_guide/Workflow


CROCO – Coding tips 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About commit message…
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About commit message, good practice :


Capitalized, short (50 chars or less) summary 


More detailed explanatory text, if necessary. Wrap it to about 72 
characters or so. 


Write your commit message in the imperative: "Fix bug" and not 
"Fixed bug" or "Fixes bug."


Further paragraphs come after blank lines. 


- Bullet points are okay, too 


- Typically a hyphen or asterisk is used for the bullet, followed 
by a single space, with blank lines in between



CROCO – Coding tips 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About commits squashing :  

- a common practice in Git to combine multiple commits into one


- it is often done to clean up commit history before merging into the main branch.
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CROCO – Git workflow , important things to remember 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• If you find a bug, report it in an ISSUE


• If you want to treat a bug, create a BRANCH, fix it and open a MERGE REQUEST. Do not 
forget to link with the dedicated issue


• If you want to develop a feature, create a BRANCH, work on it and finally open a MERGE 
REQUEST to integrate it. If the work takes long, do not forget to SYNCHRONIZE with a GIT 
MERGE MASTER 


• Do not forget to update DOCUMENTATION about your code


• Do not forget to TEST your code



CROCO – Git workflow :  Issues 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You can change name
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Work in branch 194-bug-into-toto-f

You can change name
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Work on branch 194-bug-into-toto-f ….
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Work on branch 194-bug-into-toto-f ….



CROCO – Git workflow :  merge request 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Work on branch 194-bug-into-toto-f is finished
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CROCO – Git workflow , important things to remember 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• If you find a bug, report it in an ISSUE


• If you want to treat a bug, create a BRANCH, fix it and open a MERGE REQUEST. Do not 
forget to link with the dedicated issue


• If you want to develop a feature, create a BRANCH, work on it and finally open a MERGE 
REQUEST to integrate it. If the work takes long, do not forget to SYNCHRONIZE with a GIT 
MERGE MASTER 
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Why testing ?


• Help to identify and fix bugs early on in the 
development process


• Make CROCO more reliable 


• Ensure portability (ex : different compilers)
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Different types of tests for different purposes


• Functional testing


• Non-functional tests (compatibility, compliance, 
non-regression, performance)



CROCO – TESTING STRATEGY 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In the current CROCO, tests are based on TEST-CASES defined by cppkey

Currently :

● 33 "schematic configurations" 

● 2 realistic configurations (REGIONAL, COASTAL)


Tests are carried out :

● Manually by each developer to ensure the effects of code changes

● Automattically using gitlab-CI and RVTK cppkeys , based on bash scripts


○ Check parallel reproductibility for OPENMP and MPI

○ Check compilation on 2 compilers : gfortran and ifort (env from Docker containers)

○ 27 schematic and 1 realistic configurations tested



CROCO – TESTING STRATEGY 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How can I find out about 
automatic tests?


● See file .gitlab-ci.yml

● See Build  menu in 

gitlab



CROCO – TESTING STRATEGY 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Limitations, areas for improvement ...

● No consistency in manual testing : poor traceability 

due to lack of history, everyone does what they want 

● Very time consuming manual tests, automation to 

be rebuilt : 
But … little flexibility in bash scripts


+

● No checking on physical results

● No test report 

● Push tests took ~1h30, scheduled tests ~4h

● Unknown code coverage

We should do something !!!
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BENCH python script developped by Sebastien Vallat :

● Automated bench script to handle various versions of configurations

● Dedicated branch : for-team/proposal-master-bench

● Minimalist usage,  

example :

https://gitlab.inria.fr/croco-ocean/croco/-/tree/for-team/proposal-master-bench?ref_type=heads


CROCO – TESTING STRATEGY FUTURE PLANS 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Goals : add flexibility

● Not all tests will be run in the same way: some will be run on every push, others on 

schedule, and others only by the local user

● Rules may be different for the master and release branches than for the other 

branches

● Keep push tests as light as possible, while enabling problems to be reported quickly 

(by running bench_croco.py locally)
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How ??

Categorize tests by :

● Debug - functional: compile and run a list of test cases, compilers and options

● Performance: compare test case computation times

● Reproducibility: compare results with the sequential case to detect non-reproducibility 

("simple" repro test and the "RVTK" repro using binaries).

● Regression: compare results with a previously obtained reference version and generate 

associated plots


Test case types : 

● analytical (no need of input files), 

● semi-analytical/realistic (need of input files)
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Implementation schedule for CROCO : 	             release end 2024


STEP 1: first set-up stage with 2 test cases: BASIN and BENGUELA

Step-by-step implementation:

● Debug-functional testing

● Repro-simple testing (level of -O to be defined)

● Repro-RVTK tests (be careful to modify the number of dt, USE_CALENDAR case)

● Perf tests (std and optim)

● Regression test


STEP 2: addition of the other test cases and adding rules for CI
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First implementation in gitlab-ci for 
BASIN test case in 
for-team/proposal-master-bench

branch

https://gitlab.inria.fr/croco-ocean/croco/-/tree/for-team/proposal-master-bench?ref_type=heads

