CROCO

Coastal and Regional Ocean COmmunity model

CROCO-NBQ applications fine-scale non-hydrostatic dynamics

CROCO trainings, Brest 2019

P. Marchesiello, F. Auclair, R. Benshila, L. Bordois, X. Capet, L. Debreu, F. Dumas, F. Lemarié, S. Jullien, J. Penney, L. Roblou

(So Walters to Law

Non-hydrostatic solver: advances

- Compressible (NBQ) approach (Auclair et al., 2017)
- Pressure correction method (Roullet, Molemaker, Ducousso)
 - Merging proposed in spring
- Capabilities recovered in NH:
 - OBC, Wet/Dry, WCI, I-way nesting (?), land proc elimination(?)
 - All realistic and idealized configurations can be done in NBQ
- Capabilities that are still missing
 - OpenMP, 2-way nesting, fast-step diffusion (myalpha?)
- Physical/numerical closure
 - SGS models: 3D Smagorinsky / GLS
 - Monotone (shock-capturing) schemes (WENO5-Z, TVD)

Non-hydrostatic solver: algorithm

Pressure correction method

Homogeneous linearized equations

$$\partial_{x}u + \partial_{z}w = 0$$

$$\partial_{t}u = -g\partial_{x}\eta - \partial_{x}q/\rho_{0}$$

$$\partial_{t}w = -\partial_{z}q/\rho_{0}$$

$$\partial_t \eta = w(0) = -H \partial_x \overline{u}$$

Split-explicit algorithm $0 \le m \le N_{\text{split}} - 1$ **1.** Advance η and \overline{u} with $\overline{q}^{\star} = 0$ or $\overline{q}^{\star} = \overline{q}^n$ $\begin{cases} \overline{u}^{m+1} = \overline{u}^m - g(\delta t)\partial_x \eta^m - \frac{\delta t}{\rho_0}\partial_x \overline{q}^{\star} \\ \eta^{m+1} = \eta^m - \delta t H \partial_x \overline{u}^{m+1}, \end{cases}$ **2.** Compute provisional fields \widetilde{u}^{n+1} and \widetilde{w}^{n+1} **3.** Correct \widetilde{u}^{n+1} to enforce $\overline{\widetilde{u}^{n+1}} = \overline{u}^{n+1}$ **4.** Solve $\Delta q = \frac{\rho_0}{\Lambda t} \left(\partial_x \widetilde{u}^{n+1} + \partial_z \widetilde{w}^{n+1} \right)$ 5. Correct velocity field to remove divergent part $u^{n+1} = \widetilde{u}^{n+1} - \Delta t \partial_x q, \quad w^{n+1} = \widetilde{w}^{n+1} - \Delta t \partial_z q$ However : $\overline{u}^{n+1} \neq \overline{u^{n+1}}$ <u>Solution</u>: change boundary condition on q to $\partial_z q|_{z=0} = 0$

- + Discard of barotropic non-hydrostatic mode
- + Complexity of solving Poisson equation in sigma coordinates
- + Scalability issues

Non-hydrostatic solver: algorithm

- Pressure correction method
- Compressible approach (Auclair et al., 2017)

$$p = p_a + p_H + c_s^2 \delta \rho$$

Homogeneous linearized equations

$$\partial_t u = -g\partial_x \eta - c_s^2 \partial_x \delta\rho$$
$$\partial_t w = -c_s^2 \partial_z \delta\rho$$
$$\partial_t \delta\rho = -\rho_0 (\partial_x u + \partial_z w)$$
$$\partial_t \eta = w|_{z=0}$$
$$w|_{z=-H} = 0$$
$$\delta\rho|_{z=0} = 0$$

Acoustic mode integrated in a split-explicit free surface approach at the same fast step as the barotropic mode

Semi-implicit forward-backward

$$u^{m+1} = u^{m} - \delta t \left(g \partial_{x} \eta^{m} + c_{s}^{2} \partial_{x} \delta \rho^{m} \right)$$

$$w^{m+1} = w^{m} - \delta t c_{s}^{2} \partial_{z} \left(\delta \rho^{m+\theta} \right)$$

$$\delta \rho^{m+1} = \delta \rho^{m} - \rho_{0} \delta t \left(\partial_{x} u^{m+1} + \partial_{z} w^{m+\theta} \right)$$

$$\eta^{m+1} = \eta^{m} + \delta t (w|_{z=0})^{m+\theta}$$

Non-hydrostatic solver: algorithm

Pressure correction method

Physic.

Performances

- Compressible approach (Auclair et al., 2017)
 - Solves short surface waves
 - Solves mixed acoustic-gravity waves (tsunami precursor)
 - High-order pressure gradient \rightarrow accuracy for internal waves
 - Same fast step as hydrostatic code because of :
 - ✓ possible reduction of c_s (> \sqrt{gh})
 - ✓ semi-implicit treatment
 - Scalability: scales well with resolution

COST NH \sim 3 x H

Step3d_fast

time step to gain computational time.

https://www.overleaf.com/read/jcpqcjgmvyqp

http://poc.omp.obsmip:fr/auclair/WOcean.fr/SNH/index snh hom SOLVE FAST MODE 3D EQUATIONS e.htm ******* This routines: 1- Computes non-NBQ RHS forcing terms of momentum equations. First computes the barotropic (external) RHS forcing term (rubar, rvbar) then adds it to the internal RHS forcing (computed in pre_step3d). 2- Solves the 3D momentum conservation equations for fast-mode components (qdmu_nbq, qdmv_nbq, qdmw_nbq) by time integration of all forces: *Compressible pressure force + second viscosity + gravity* + NT Coriolis force + restoring force + non-NBQ RHS forces 3- Solves mass conservation equation, i.e., computes compressible density rho_nbg by time integration of momentum divergence In this version, a first guest of zeta is derived from the surface Semi-implicit forward-backward vertical velocity (surface characteristic relation) instead of the depth-averaged conservation of mass. This satisfies dynamical coupling with the surface layer. After solving the 3D momentum equations, a $u^{m+1} = u^m - \delta t \left(q \partial_x \eta^m + c_s^2 \partial_x \delta \rho^m \right)$ final zeta field is diagnozed from mass conservation (then Hz is also corrected for the internal time step). $w^{m+1} = w^m - \delta t c_s^2 \partial_z \left(\frac{\delta \rho^{m+\theta}}{\delta \rho} \right)$ W-momentum equation is solved with explicit or implicit methods: $\delta \rho^{m+1} = \delta \rho^m - \rho_0 \delta t \left(\partial_x u^{m+1} + \partial_z w^{m+\theta} \right)$ - Explicit scheme: w-momentum is updated right after (and the same way as) u- and v-momentum. - Implicit scheme: horizontal component of divergence is first $\eta^{m+1} = \eta^m + \delta t(w|_{z=0})^{m+\theta}$ precomputed (as required by fast-mode mass conservation) before tridiagonal Gauss Elimination is carried out for qdmw_nbq(m). For all components, a Forward-Backward scheme is implemented: - Explicit scheme: Forward: zeta, gdmu nbg, gdmw nbg. Backward: rho nbq. - Implicit scheme: Forward: zeta, gdmu nbg. Backward: gdmw_nbg, rho_nbg. In the NBQ_PERF option, the vertical grid is not evolving at fast

CROCO

Coastal and Regional Ocean COmmunity model

Applications

Submesoscale dynamics Internal bores Breaking internal tides Turbulence mixing Surface wave dynamics River plumes Energy flows in a realistic, coupled ocean and in geographically heterogeneous regimes

Quasi-hydrostatic equations non-traditional Coriolis terms

Bertrand Delormes, Stanford U.

Marshall et al., 1997; Gerkema et al, 2008

$$\begin{aligned} &\frac{\partial u}{\partial t} + (\mathbf{V}_3 \cdot \nabla)u - fv + f^*w + \frac{\partial \phi}{\partial x} - \mu_{\mathbf{v}} \Delta_h u - \nu_{\mathbf{v}} \frac{\partial^2 u}{\partial z^2} = 0, \\ &\frac{\partial v}{\partial t} + (\mathbf{V}_3 \cdot \nabla)v + fu + \frac{\partial \phi}{\partial y} - \mu_{\mathbf{v}} \Delta_h v - \nu_{\mathbf{v}} \frac{\partial^2 v}{\partial z^2} = 0, \\ &- f^*u + \frac{\partial \phi}{\partial z} = -\frac{\rho}{\rho_0} g, \end{aligned}$$

Are NT terms essentially fast modes?

D

Equatorial Wave Over Topography 150 days into the simulation (wave period = 10 days) Bertrand Delorme - 10/10/2018

Nonlinear internal waves

Internal hydraulic jump

rho0=0kg/m3 angle=21.6716° /home/hilm/NHOMS/NUWA/Run_Gbr3d_50mV2_nbq_VE_N40_prter_TP/OUTPUT/GBR_NBQ_his_CS.nc section entre x=-5.8058;-5.7063° y=35.9129;35.9457° à it=300*2min

PhD Margaux Hilt, 2019

Nesting: Gibraltar / Mediterranean

AGRIF NESTING

 \rightarrow 50 m resolution

L. Roblou, M. Hilt (LEGOS)

Coastal internal wave breaking

Kumar et al., UW, Seattle

Hydro

NH

Bottom W

3D Turbulence mixing

TEASEO project (Y. Morel, P. Haynes)

Penney et al., 2018

KH instability - I m resolution

Ekman layer LES

Nobuhiro Suzuki

WAVE-AVERAGED MODELING

WAVE-RESOLVED MODELING

Validation of wave breaking with flume experiment (GLOBEX) Sea level CROCO 200 0.1 180 0.05 160 (s) 160 (s) 140 -0.05 120 -0.1 100 0.1 10 40 50 60 70 80 90 X (m) Sea level Globex 200 0.1 180 0.05 160 (s) 140 -0.05 120 -0.1 100 0.15 10 50 X (m) 70 80 90 20 30 40 60 Cs=1500 m/s NBQ_PRECISE

WAVE-RESOLVED MODELING

Rogues waves

Vysikas et al., 2018

CROCO

Coastal and Regional Ocean COmmunity model

Numerical methods

Physical closure (LES vs MILES)

CROCO SGS models :
 3D Smagorinsky
 3D GLS

Physical/numerical closure

$$K_{\rm M} = c\sqrt{2k}lS_{\rm M} + v,$$

$$\frac{\partial k}{\partial t} + U_i \frac{\partial k}{\partial x_i} = \frac{\partial}{\partial z} \left(\frac{K_{\rm M}}{\sigma_k} \frac{\partial k}{\partial z}\right) + P + B - \varepsilon$$

ShearBuoyancy(3D)(homog. case)

 $v_{Smag} \sim C_S LV$ $C_S \sim 0.01$ $v_{Num} \sim C_N LV$ $C_N = 1/12 (UP3)$ 1/60 (UP5)

To function, SGS models must be associated with advection schemes that reduce numerical diffusion and include shock-capturing (MILES)

