

Introduction to CROCO model

CROCO history

CROCO philosophy

Community development

Continuous development

Open Source

Stable releases: every 1 / 1.5 year

Help/support through a forum

Tools for an easy built of regional and coastal configurations

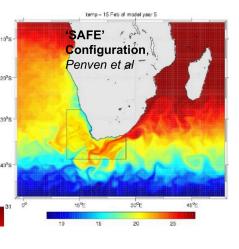
Adapted to IRD

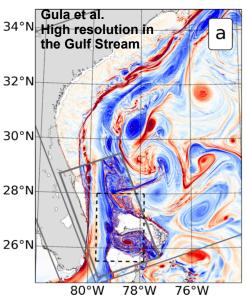
High-level numerical schemes

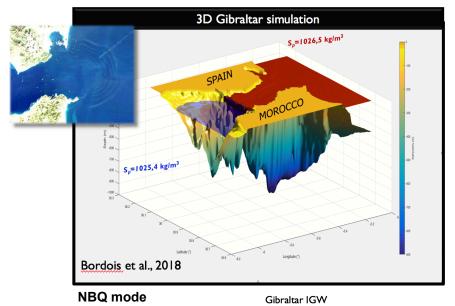
HPC Realistic complex modelling

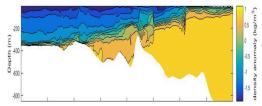
Circulation forced by waves

Coupling with atmosphere and waves

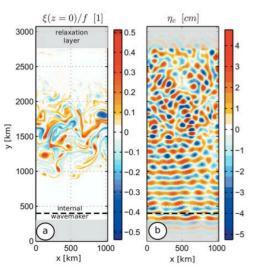

Coupling with biogeochemistry and ecology


LES / DNS

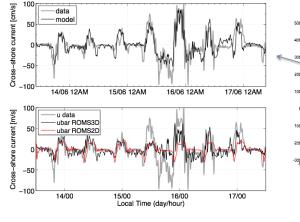

CROCO examples

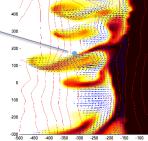


For starting, here are a few examples of use of CROCO

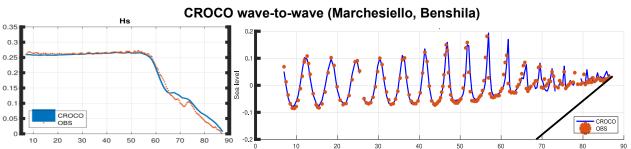


CROCO examples

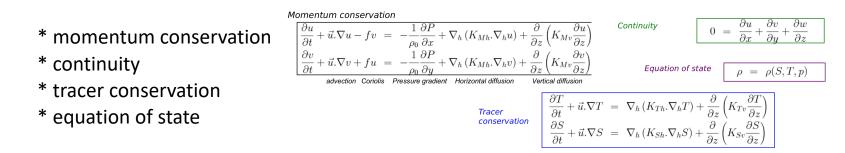



For starting, here are a few examples of use of CROCO

Ponte & Klein, 2015,, internal tides and eddies



Marchesiello, Benshila. 2015, Rip current

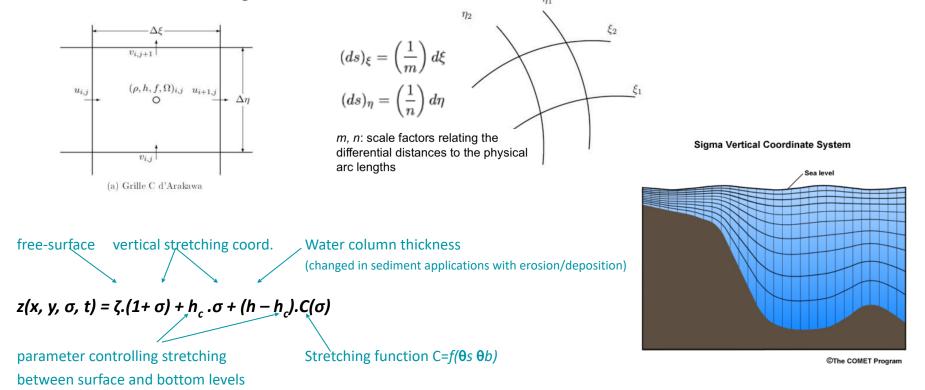


CROCO numerics

Coastal and Regional Ocean Community model

• Solves the Primitive Equations in an Earth-centered rotating environment:

- Boussinesq hystrostatic mode, and non-hydrostatic, non-Boussinesq mode (NBQ) available
- Split-explicit time-stepping:
 see dedicated course


* short time steps are used to advance the surface elevation and barotropic momentum
 * much larger time step used for temperature, salinity, and baroclinic momentum
 * for NBQ mode: barotropic mode solver is replaced by a fully 3D fast mode solver,
 resolving all waves down to acoustic waves (with sound speed that can be decreased to the

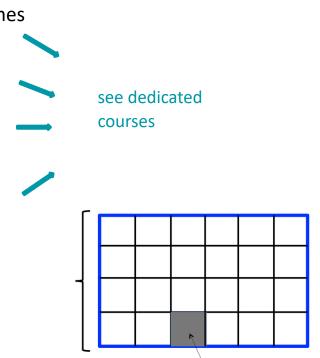
maximum wave velocity one wants to solve)

CROCO numerics

CROCO grid is discretized in coastline- and terrain-following curvilinear coordinates with freesurface, on an Arakawa-C grid

Sub domain

High-order numerics


High-order numerical schemes: 3rd and 5th-order advection schemes

Rotated tensors to reduce diapycnal mixing

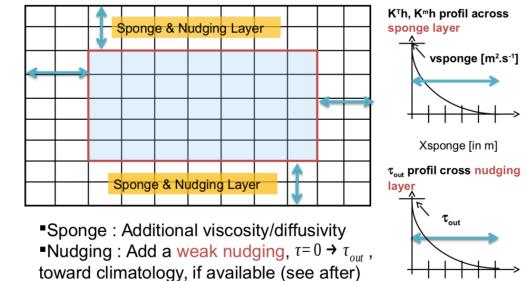
KPP and GLS mixing parameterizations

Optimization

Parallelization by two-dimensional subdomain partitioning OPEN-MP and MPI

Total domain

CROCO configurations



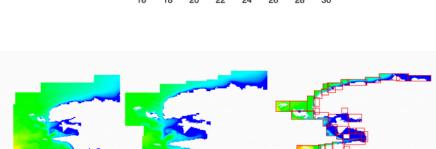
Idealized conditions

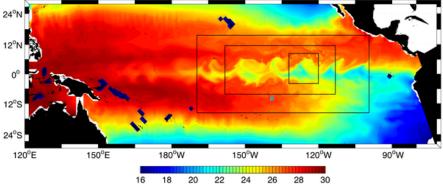
- Several idealized test cases are provided
- Analytical forcing and boundary conditions can be set

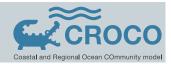
Regional configurations

- Open boundaries: active, implicit, upstream-biased radiation conditions
- Climatological or interannual surface and boundary conditions
- Bulk formulations for atmospheric forcing
- Rivers, and tidal forcing available

Xsponge [in m]

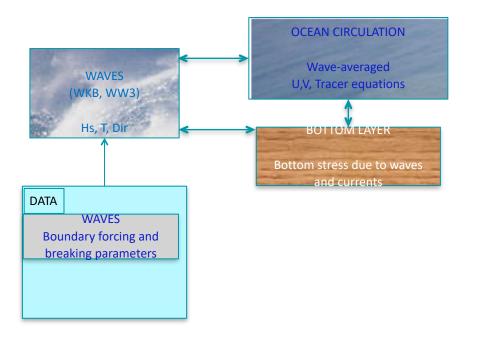

CROCO nesting


Nesting with AGRIF


- Grid refinement with the AGRIF library (developed at Inria)
- 1-way (coarse grid force the finer grid) and 2way (feedback of the finer grid to the coarse grid) nesting capabilities

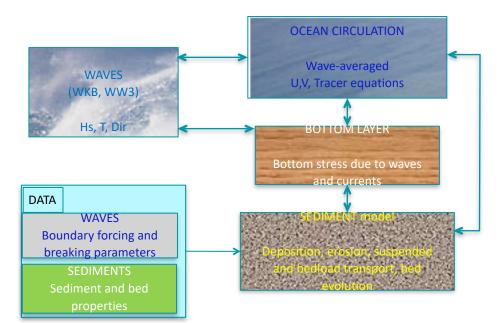
Towards multi-grid / multi-resolution (in dev.)

- Exchanges between grids of the same level
- Refinement criteria
- Good CPU load balance
- Management of numerous grid outputs



Wave-current interactions

- Based on the vortex force formalism (Uchiyama et al. 2010):
 - Impact of evolving water level on waves
 - Impact of current on waves evolution (refraction, etc)
 - Wave-induced circulation (stokes drift and transport, acceleration by breaking)
 - Enhanced mixing due to wave breaking
 - Surface and bottom streaming (wave-induced thin viscous boundary layer)
 - Mass flux due to wave rollers
 - Wave-induced pressure effects
 - Wave-induced additional diffusivity
 - Wave-induced setup
- WKB module
- Coupling with a wave model through OASIS3-MCT library (developed at CERFACS)

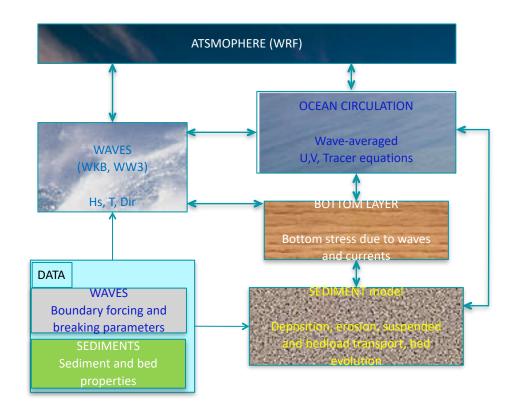


Sediment modules

- USGS Sediment model (Blaas et al. (2007); Warner et al. (2008))
 - Wave input (specified, WKB, or WW3)
 - Wave-current combined bottom stress (Soulsby, 1995)
 - Erosion (armoring), deposition, suspended transport
 - Bedload transport and flux divergence
 - Bed model (sand, mud, or mixed)
 - Morphological evolution (with acceleration factor)
 - Wetting and drying
 - Positive-definite advection schemes (WENO,TVD)
 - · Sediment influence on density
- MUSTANG (Mud and Sand Transport Modeling, Le Hir et al., 2011, in dev. by Ifremer/DHYSED) <u>Morphodynamics</u>

Currents-sediment coupling (Warner et al. 2008):

- Volume and constancy preserving scheme
- Speed-up equilibration: morpho. factor (Roelvink, 2006)



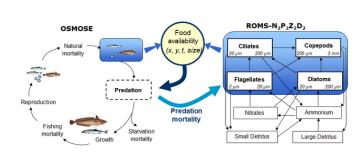
Ocean-wave-atmosphere coupling

- Current feedback (CFB) option available
- Coupling with an atmospheric model through OASIS3-MCT library (developed at CERFACS)

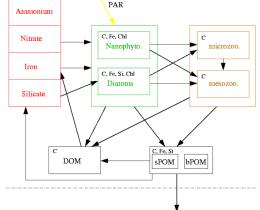
⇒ Need to download and compile OASIS and coupled models

Biogeochemistry

- PISCES module (Aumont and Bopp, 2006)
- BioEBUS module (Gutknecht et al., 2013) ٠
- NPZD .
- MEDUSA (in dev) ٠


Coupling with lagrangian and ecosystemic models

- ARIANE •
- ICHTYOP



OSMOSE

APECOSM

CROCO tools and facilities

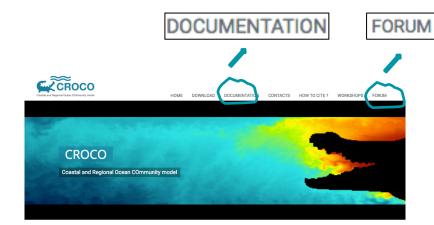
Matlab CROCO_TOOLS

- Climatological pre-processing
- Interannual pre-processing
- Visualization

Online diagnostics

• Online temperature / vorticity / energy balance

Python CROCO_TOOLS


- Pre-processing: in dev.
- Visualization

XIOS (dev. at ISPL)

- Outputs facilities
- Diagnostics facilities
- \Rightarrow Need to download and compile XIOS

CROCO help

CROCO, Coastal and Regional Ocean COmmunity model

CROCO is a new oceanic modeling system built upon ROMS_AGRIF and the nonhydrostatic kernel of SNH (under testing), gradually including algorithms from MARS30 (sediments) and HYCOM (vertical coordinates). An important objective for CROCO is to resolve very fine scales (especially in the costal area), and their interactions with larger scales. It is the oceanic component of a complex coupled system including various components, e.g., atmosphere, surface waves, marine sediments, biogechemistry and eccosystems.

CROC0 Version 1.0 official release is now available in the Download section. It includes new capabilities as non-hydrotatic kernel, ocean-wave-atmosphere couling, sediment transport, new high-order numerical schemes for advection and mixing, and a dedicated *U* or server (XIOS). A new version of CROC0_TOOLS accompany this release. CROCO will keep evolving and integrating new capabilities in the following vers.

CROCO project: version 1.0

Releases

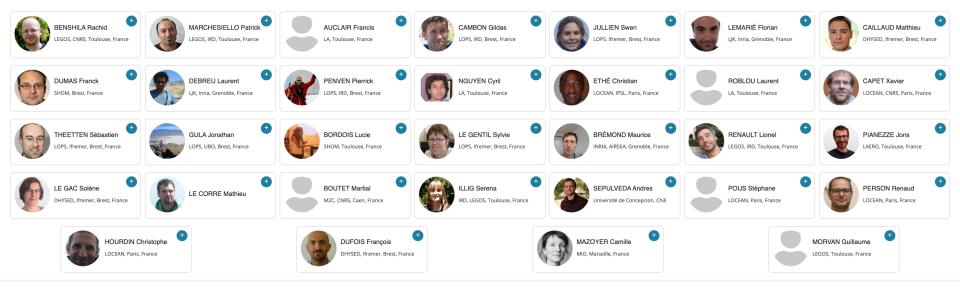
Official release CROCO v1.0 now available

New release of <u>croco_tools</u> with new tools in python (croco_pytools) and new tools for coupling (Coupling_tools)

Mailing list & Forum

We strongly encourage all users to join our mailing list (low traffic; announcements, updates, bug fixes):

croco-users@lists.gforge.inria.fr To **subscribe**, simply send an email to

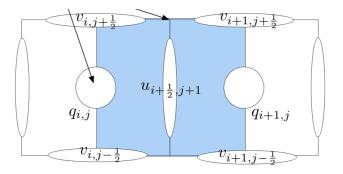

croco-users-join@lists.gforge.inria.fr

To unsubscribe, simply send an email to croco-users-leave@lists.gforge.inria.fr

oastal and Regional Ocean COmmunity model				HI	THERE! PLEASE SIGN IN HEL
ALL UNANSWERED Sear	ch or ask your question			0	ASK YOUR QUESTION
questions	Sort by » date activity ▼	answer	s votes	RSS តា	T
ource_ncfile				-	Tag search
CROCO-model CROCO-tools		no	answers	28 views	
		Oct 7 '19 angelolemos			search
roco.csh					Tag
ROCO-model compilation-installation		no votes	answers	2 views	CROCO-model ×26
compliauon-installation			Oct 4 '19	Apriansyah	CROCO-tools ×10
fline nesting				670	compilation-installation ×6
CROCO-model dynamics-numerics nesting		no votes	no answers	678 views	biogeochemistry ×5
dynamics-numerics nesting) '19 camila	dynamics-numerics ×5
roco blows up when defining PISCES and BULK forcing					nesting ×4
CROCO-model biogeochemistry		NO votes	no	145 views	physics-params ×4
		Sep 18 '19 rreboreda			download ×2 forcing ×2
ta ECCO 2019					grid ×2 parallelization ×2
		no votes	no	606 views	sediment-waves ×2
CROCO-model CROCO-tools ini-boundaries		10003		19 crisalas	AGRIF ×1
rollal officiency					ini-boundaries ×1
rallel efficiency		no votes	no answers	75 views	matlab ×1
ROCO-model parallelization		Votes		'19 Marcela	Miscellaneous ×1

CROCO team and contributors

https://www.croco-ocean.org


https://croco-ocean.gitlabpages.inria.fr/croco_doc

APPENDICES

CROCO grid is discretized in coastline- and terrain-following curvilinear coordinates, on an Arakawa-C grid, with free-surface

CROCO numerics

$$z(x, y, \sigma, t) = \zeta(x, y, t) + [\zeta(x, y, t) + h(x, y)] S(x, y, \sigma),$$
$$S(x, y, \sigma) = \frac{h_c \sigma + h(x, y) C(\sigma)}{h_c + h(x, y)}$$

$$\begin{aligned} z(x, y, \sigma, t) &= S(x, y, \sigma) + \zeta(x, y, t) \left[1 + \frac{S(x, y, \sigma)}{h(x, y)} \right], \\ S(x, y, \sigma) &= h_c \, \sigma + \left[h(x, y) - h_c \right] C(\sigma) \end{aligned}$$

$$z = \zeta(1+s) + h_c s + (h - h_c)C(s)$$

$$C(s) = (1-b)\frac{\sinh[\theta s]}{\sinh\theta} + b\frac{\tanh[\theta(s+\frac{1}{2})] - \tanh[\frac{1}{2}\theta]}{2\tanh[\frac{1}{2}\theta]}$$

where

 $\zeta(x, y, t)$ is the time-varying free-surface, h(x, y) is the unperturbed water column thickness $S(x, y, \sigma)$ is a nonlinear vertical transformation functional, σ is a fractional vertical stretching coordinate ranging from – $1 \le \sigma \le 0$

 $C(\sigma)$ is a nondimensional, monotonic, vertical stretching function ranging from $-1 \le C(\sigma) \le 0$,

h_c is a positive thickness controlling the stretching.

Note: in sediment applications, h = h(x, y, t) is changed at every time-step since it is affected by erosion and deposition processes.