Examples of biogeochemical studies using ROMS/CROCO-PISCES

Vincent Echevin and colleagues

LOCEAN

vincent.echevin@ird.fr

3 examples from the Peru upwelling system:

- Long-term trends (1973-2008) in the oxygen minimum zone
- Impacts of climate change under RCP8.5 "worst-case" scenario
- Submesoscale dynamics

Open Boundary Conditions

Physics : global models (1/12°, 1/4°, 2°)

Biogeochemistry : climatologies (CARS, WOA, GLODAP, Fe from ORCA-PISCES)

CROCO-PISCES (1/9°~12 km)

First step for each BGC study: model evaluation of the physics

Evaluation of the physics (sea level, temperature, currents, mixed layer depth,...) => very important step : realism of biogeochemical fields depend strongly on realism of the physics

First step for each BGC study: model evaluation of the physics

Evaluation of the physics (sea level, temperature, currents, mixed layer depth,...)

=> very important step : realism of biogeochemical fields depend strongly

on realism of the physics

First step for each BGC study: model evaluation of the physics

Evaluation of the physics (sea level, temperature, currents, mixed layer depth,...) => very important step : realism of biogeochemical fields depend strongly

on realism of the physics

Comparison with a glider section north of Peru in November-December 2015

80⁰W

30'

81°W

4-15dec

15-17dec

30'

2000

1000

79[°]W

Comparison with a glider section north of Peru in November-December 2015

80⁰W

81°W

30'

4-15dec

15-17dec

30'

2000

1000

79[°]W

-60 -80 -80 -80 -80 -80 -100 -120

30'

79[°]W

80⁰W

81[°]W

30'

Comparison with a glider section north of Peru in November-December 2015

Model (4 km res.)

Model (4 km res.)

Oxygen long term trends in the Peru OMZ

- What drives oxygen variations in the Peru upwelling systems?

El Nino/La Nina: Espinoza-Morriberon et al, (2019), Frontiers in Marine Sciences

Long-term trends: Espinoza-Morriberon et al.(2021), Scientific Reports

Model configuration of this study:

- ROMS-PISCES model (1/6°~ 20 km), 1958-2008 period
- SODA global model for physical open boundaries
- CARS climatology O2 + nutrients for bgc open boundaries
- atmospheric forcings: NCEP, CFSR,...

Trends in the Peru-Chile region

Trends in the Peru-Chile region

nstitut de Recherche

Instituto francés de Investigación para el Desarrollo

Gutierrez et al. (2011)

Evaluation of Interannual variability of the OMZ

Evaluation of Interannual variability of the OMZ

Long-term variability of the OMZ

- decreasing oxygen trends between 10 m and 150 m depth in observations and model

Long-term variability of the OMZ

- decreasing oxygen trends between 10 m and 150 m depth in observations and model

Instituto francés de Investigación para el Desarrollo

- model reproduces oxycline shoaling trend (~ -10 m/decade)
- subsampling the model results leads to overestimation of trend
 - => observed trend could be weaker than the real trend !

Investigating the forcing of the OMZ long-term variability

Source of variability : equatorial currents and/or local wind stress ?

Open boundary forcing (mainly near the equator)

Investigating the forcing of the long-term variability

Source of variability : equatorial currents and/or local wind stress ?

Different climatological wind forcing + interannual boundary conditions

Investigating the forcing of the long-term variability

Source of variability : equatorial currents and/or local wind stress ?

Open boundary forcing (mainly near the equator)

Different climatological wind forcing + interannual boundary conditions

+ climatological boundary conditions

Investigating the forcing of the long-term variability

Source of variability : equatorial currents and/or local wind stress ?

Open boundary forcing (mainly near the equator)

Different climatological wind forcing + interannual boundary conditions

Different **interannual** wind forcing + **climatological** boundary conditions

=> Reducing oxygen flux by equatorial currents (ventilation) drives deoxygenation in 1970-2008 period

Impact of climate change on the Peruvian Upwelling system :

Echevin et al., Biogeoch. Discuss., 2020

Year

- strong model bias in CMIP5 ESM

- no/weak coastal upwelling in ESM => necessary to use regional models

to downscale climate and BGC signals

Moss et al., 2010

- strong bias in nitracline depth in ESM

Nearshore nitracline depth in ROMS-PISCES

- strong bias in nitracline depth in ESM
- regional downscaling corrects part of the bias

=> ROMS-PISCES surface chlorophyll range is correct ≠ global models
 => surface chl trends are very differents from those in the global models
 => weak surface chl trends in ROMS-PISCES in spite of nutricline deepening

Chlorophyll trend vertical structure

=> stable phytoplankton concentration at

surface and reduction below

CROCO-PISCES: tool to understand mechanisms

- What is the impact of small scale (submesoscale) dynamics in the Peru upwelling system?

Thomsen et al. (2016), Geophysical Res. Let. 90°W 80°W 70°W Hauschildt et al., (2021), Biogeochemical cycles. CROCO 1/9° Model configuration CROCO-PISCES model (1/9°~13 km) 0° · + offline zoom (1/45°~2.6 km) CROCO 1/45° 20°S SST 16 18 20 22 26 28 24 Model SST (°C)

- there is a lot of subduction in upwelling systems!

- there is a lot of subduction in upwelling systems!

- there is a lot of subduction in upwelling systems!

Subduction (downwelling) on the cold side of the front, upwelling on the warm side

Thomsen et al., 2016

Lagrangian approach (ROMS offline) : what are the characteristics of upwelled water parcels ?

Commission

Modelling the dissolved oxygen cycle on the Senegalese shelf: physical and biogeochemical processes, and Lagrangian analyses

Abdoul Wahab Tall, Vincent Echevin, Eric Machu and Xavier Capet

Why study dissolved oxygen (DO) in the Senegalese shelf?

Deoxygenation trends (Breitburg et al., 2018)

Why study dissolved oxygen (DO) in the Senegalese shelf?

µmol/kg

Why study dissolved oxygen (DO) in the Senegalese shelf ?

Serranidae (fish) mortality attributed to low oxygen concentrations

µmol/kg

Why study dissolved oxygen (DO) in the Senegalese shelf ?

Why study dissolved oxygen (DO) in the Senegalese shelf ?

Study bottom DO variability during the upwelling season over the Senegalese shelf using a regional model:

- Understand the role of the physical and biogeochemical processes controlling the DO budget
- Study the characteristics of the upwelled source waters using a Lagrangian approach

Modelling the DO cycle : CROCO-PISCES model architecture

modelling the DO cycle : CROCO-PISCES model characteristics

- 10 km, 50 vertical levels, 225x290 grid points
- 2 km, 50 vertical levels, 201x302 grid points

- Forcings:
 ASCAT wind stress (daily, 2014-19)
 Climatological heat/freshwater fluxes (COADS)
 PISCES: dust deposition (Iron) climato
- Initial/Boundary Conditions : Mercator (1/12°) PISCES: WOA, GLODAP
- BGC model PISCES:
 - Oxygen budget
 - BGC diagnostics (Primary production, export,...)

DO Budget : CROCO-PISCES model validation

• Good match between modelled and observed DO

DO Budget : CROCO-PISCES model validation

DO Budget : Physical and biogeochemical processes

Oxygen Budget : focus on physical processes

- Transport of poorly oxygenated water ¹ by the onshore currents on the shelf
- Maximum advection due to strong DO gradient near 20-30 m isobaths
- Ventilation of the bottom layer by vertical mixing of surface oxygenated water and low DO bottom water

Oxygen Budget : focus on biogeochemical processes

Photosynthesis \Rightarrow sources

- Regenerated production significantly higher than new production over entire shelf
- New production strong in the north where the upwelling of subsurface nitrate is located

a)

14°N

Near-bottom vertical velocity during upwelling season (Ndoye et al., 2017 **using the same model**)

Oxygen Budget : focus on biogeochemical processes

- DO BGC consumption = OM remineralization, which largely compensates production by photosynthesis
- Zooplankton (microzoo + mesozoo) respiration levels lower than OM remineralization
- Mesozooplankton respiration dominates microzooplankton respiration.

Analysis of the water masses reaching the shelf : methodology

- floats transported 16⁰N backwards in time for 30 days
- 500 floats released $_{15^{\circ}N}$ between 30 & 40 m around Melax station, every 5 days (Feb-April), 2015-19
- 45000 floats in total
- DO, depth, vertical $_{13^{\circ}N}$ mixing, BGC terms registered along each trajectory

12°

- Increase of DO during one month
- weak change during the first 15 days
- Strong change during the last 15 days

 Low DO supply by vertical mixing in 2017 and 2016

- Low DO consumption by BGC in 2016
- Very strong mixing and consumption in 2015 because of shallow source waters

Conclusions

- Physics brings DO and biology consumes DO in the bottom layer on the continental shelf during the upwelling season
- Advection decreases DO by transporting low DO subsurface water onto the shelf
- Vertical mixing ventilates the bottom layer
- Consumption of DO by remineralization of organic matter strongly compensates production of DO by photosynthesis in the bottom layer
- The source waters show high interannual variability, with the lowest oxygen levels encountered in 2017 associated with reduced vertical mixing

Oxygen Budget : focus on physical processes (total advection)

- Currents flow towards the coast
- Low DO deep waters transported on the shelf
- Strong horizontal DO gradient between 20-30 m isobaths
- Maximum advection near 20-30 m isobaths

Oxygen Budget : focus on physical processes (vertical mixing)

- Strong vertical Kz gradient between 20-30 m isobaths
 - The greater vertical mixing between 20-30 m isobaths is due to a DO influx from the oxygenated layers above by friction on the bottom combined with the strong vertical gradient.

characteristics of the source waters one month before reaching shelf

