
CROCO and Parallelisation : an overview

Rachid Benshila

Concept and techniques

How to use

Related aspects

Parallelisation : domaine decomposition

Approach 1 : shared memory

=> cores have access to a common shared
memory

=>exchange of information through memory
copy

Standard OpenMP
(Open Multi-Processing)

Approach 2 : distributed memory

=> cores don’t have access to a common memory

=> exchanges through network and interconnection

=> in practice MPI can handle efficiently shared memory

Standard MPI
(Message Passing Interface)

Implementation within CROCO : OPENMP

- step 1 : 2 files to edit
- param.h

 specify the decomposition
 in x et y directions => NPP=4
- cppdefs.h :

 activate OpenMP. => #define OPENMP

- step 2 : compilation
 ./jobcomp

- étape 3 : execution
- export OMP_NUM_THREADS=4

 specify the number of cores for the environment
 - ./croco

Implementation within CROCO : MPI

- step 1 : 2 files to edit
- param.h

 specify the decomposition
 in x et y directions => NP_XI, NP_ETA
- cppdefs.h :

 activate MPI => #define MPI

- step 2 : compilation
 ./jobcomp

- étape 3 : compilation
 - mpirun -n 4 ./croco
(or mpiexec or ….)

Summary and perspectives

- 2 paradigmes available MPI et OpenMP

- code to re-compile !!

- MPI currently more used for Croco

- ETA direction for decomposition

no hybrid MPI/OpenMP GPU version underway

Parallelisation : but also ….

A few tricks :

- the output files case (MPI)

- the land only processors case

mpirun -np 4 ./croco. (NP_ETA=4)

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

STEP 1 STEP 2 STEP 3 STEP 4

MPI => Writing files 1/4 : default

Unefficient !!!!!!!

#define PARALLEL_FILES
mpirun -np 4 ./croco. (NP_ETA=4)

1

4

3

2
Fast but a lot of small files

at the end

Need to reconstruct a global file

(cf utility ncjoin)

MPI => Writing files 2/4 : parallel files

#define KEY NC4PAR
mpirun -np 4 ./croco. (NP_ETA=4)

1

4

3

2
Fast with a global file at the end !!!

Need NetCDF4 library

built with parallel capabilities

MPI => Writing files 3/4 : parallel writing

XIOS

Strategy for outputs
XIOS : external server developed at IPSL
http://forge.ipsl.jussieu.fr/ioserver

Exemple
(S. Masson, from NEMO …)

MPI => Writing files 4/4 : XIOS

http://forge.ipsl.jussieu.fr/ioserver

XIOS general

• Originally, a library dedicated to Input/Output management of large climate
coupled models (e.g. CMIP simulations for IPCC with NEMO and other
code)  

• Written and managed at (LSCE-IPSL) by Y. Meurdesoif et al.  

• XIOS creates output NetCDF files  

• Implemented in other codes (ROMS, MARS3D, CROCO) by non-xios-expert
developers despite of a light existing documentation.  

• All documentation at http://forge.ipsl.jussieu.fr/ioserver with tutorials, user
guide  

• Installation of XIOS could be not an easy task to do on a new machine, be
sure  
it is already well installed with the right netcdf4 library !  

• In the next croco version, XIOS version >=2

MPI => Writing files 4/4 : XIOS

XIOS why and when ?
• I/O becomes a bottleneck in parallel computing

with using a large amount of processors
e.g. Atlantic model at 1km resolution :
10000 x 14000 x 200 grid points ; using up to
~50000 procs

 => Very difficult or impossible to manage such
amount of output datas with classical netcdf library.

1.Efficiency in production of data on supercomputer parallel file system

2.Flexibility and “simplicity” in management of I/O and data definition

• Only an external configuration file is needed to configure the
outputs (no need to compile each time)

- create new files
- create new variables from referenced variables
- use time filter (instantaneous, average, cumulate, ...)

Remark : It is may be not so “ simple ” for beginners because you need to understand how to modify the
configuration file written in xml  

Ecriture de fichiers MPI 4/4 : XIOS

XIOS : attached mode

Using xios in attached mode : 
each croco executable compute and write (like a classical library)

Ergonomy AND efficient parallel writing BUT writing overhead

MPI => Writing files 4/4 : XIOS

XIOS : detached mode (server mode)

each croco executable compute and send field to the server

- croco executables for computing only

- only xios server writes output

- Flexibility AND efficient parallel writing AND (almost) no overhead

MPI => Writing files 4/4 : XIOS

XIOS : in practice

- In cppdefs.h add ccp keys : #define XIOS

- Add the XIOS library path in jobcomp

- Compile once : ./jobcomp

- Edit/modify xios configuration file : iodef.xml
- To run :

 - in attached mode : as usual

- in detached mode : like a coupled model …
mpirun -np 10 ./croco -np 2 ./xios.exe

MPI => Writing files 4/4 : XIOS

1. Preprocessing

In croco/MPI_NOLAND :

- read the README

- compile: edit makefile + make

- edit the namelist :

 - name of the grid file

 - number max of cores

- execute : ./mpp_optimize

- visualize :

 ./mpp_plot.py croco_grd.nc benguela-008x005_033
- re-read le README …

2. Before compiling CROCO

- cppdefs.h : #define MPI_NOLAND

- param.h : insert values for NP_XI, NP_ETA
and NPP given by the preprocessing

(NPP <= NP_XI x NP_ETA)

- execute as usual (mpirun -np etc)

WARNING : grid file as to be called
croco_grd.nc (or to be changed in
MPI_Setup.F)

The land only processors case

