TUTORIAL 03:
NUMERICAL ASPECT |: FINITE DIFFERENCES




OBJECTIVES

» Analyse the temperature equation

» Admire my dream swimming pool

» Discretize the swimming into a regular a mesh grid

» Transform continuous derivatives by finite difference approximations

> Solve the 1D-Diffusion equation in MATLAB
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The Grid

» Let’s consider Temperature data (T) discretized on a grid :

Mean SST from CARS data
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My Dream Swimming Pool




Imming Pool
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My Dream Swimming Pool




Solving the 1D Diffusion equation

» Let’'s model how the temperature will evoluate in the swimming pool
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Solving the 1D Diffusion equation

» Let’'s model how the temperature will evoluate in the swimming pool
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» To do so, you will solve the Temperature équation :
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Solving the 1D Diffusion equation

» Let’'s model how the temperature will evoluate in the swimming pool
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» To do so, you will solve the Temperature équation :
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» We can simplify the equation, under particular hypothesis:
* There is no currents in the swimming pool
* We do not consider variation of temperature with depth
% It becomes a 1 Dimensional (1D) problem in the x coordinate
* The diffusion coefficient ( /{7, ) is a constant



Solving the 1D Diffusion equation

» Let’'s model how the temperature will evoluate in the swimming pool
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» To do so, you will solve the 1D diffusion equation :
oT 0. ( QT)
N Ox
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is the temperature increment during the period of time dt

) KThS the diffusion coefficient (ex: 0.001 m?/s)

0 (0T
o - | the Laplacian operator

Oz \ Ox plied to the temperature field with an horizontal scale dx
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Finite Difference Definition

— The first step in the discretization procedure is to replace the domain [0,L] X [0,T] by a set of
mesh points. Here we apply equally spaced mesh points :
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Finite Difference Definition

o1

» Let’'s model the temporal derivative a

A

Temperature
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Finite Difference Definition

o1

» Let's model the temporal derivative a

A

T'(t)

Temperature
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Finite Difference Definition

02T
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Finite Difference Definition

02T
> Let’s model the spatial derivative V2T = EP)
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Finite Difference Definition

02T
> Let’s model the spatial derivative V2T = EP)
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Finite Difference Definition

02T
> Let’s model the spatial derivative V2T = EP)
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Finite Difference Definition

0%T

> Let’s model the spatial derivative V2T = EP)
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Finite Difference Definition

0%T

> Let’s model the spatial derivative V2T = EP)
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Solving the 1D Diffusion Equation

» Back to the diffusion equation
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Solving the 1D Diffusion Equation

» Back to the diffusion equation

oT 0 ( oT
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Solving the 1D Diffusion Equation

» Back to the diffusion equation
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becomes..

T —Tf _ K i1 — 2T + T2,

= Kr Forward Euler scheme
At v Ax?
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At
TiTl+1 — Tin + KTUA_xZ (Ti”-)i-l - ZTin + Trll)

Explicit method : Direct calculation of the
temperature at a later time from the current time
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Solving the 1D Diffusion Equation

» We have an explicit formulation:

At
o TM=TI+4 Kﬁ,m (TR, — 2T + T ,)

e The initial condition: T att = 0 for all x

23



The Computational Algorithm

» We have an explicit formulation :
° n+l _ n At n n n
I;7 " =T, + Ky AxZ (T3 — 2T + T;Z1)
e The initial condition: T att = 0 for all x

— The computational algorithm consists of the following steps:
O Initialise the vector state variable (T, i = 1, ..., N,).

® Plot T! at every point in the domain,

E © Apply equation (2) for all the internal points, i = 2, ..., N, — 1,
— | @ Set the boundary values for i = 1 and i = N, (T{*** and T ),
|

S © Plot T2 at every point in the domain,

2

=

< Rince and repeat (steps © O ©).
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STEP 1: Logging onto the HPC cluster

> From a terminal/konsole:
ssh -X !ﬁﬁ!ﬂ@scp.chpc.ac.za

» Request one node with the alias command gsubil

gsubil

» Go your lustre directory and create a dedicated directory
cd lustre; mkdir diff; cd diff

» Copy a template of the computational algorithm and start MATLAB
cp /mnt/lustre/users/sillig/CROCO_TRAINING Weekl/
3 Some files/My diffusion 1D.m .
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STEP 2: Complete the Initialisation step

— [You have to complete this script at lines 29, 53 and 56 (see »» » below). Here are the different
parts of the algorithm:

= Tine 14: K is the constant horizontal diffusion
coefficient.
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= Lines 16-18: the length of the swimming pool is S T o T 18

descetized into 21 equaly-spaced points. " N

45

= Lines 20-21: We begin at n = 1, with At = 0.1s.

B
=

= Line 25: The swimming temperature pool is
initialized at 25°C, everywhere. This corresponds to
step @ of the computationsal algorithm (see #3).

» 7 Complete line 29, to initialise (@) the 11%

spatial point at 50°C. , NP S S |

= Lines 32-38: This is a plot (@) of the temperature S
in the swimming pool.
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STEP 3: Complete the Script

» » 7 At line 53, start by applying equation (2) for the 11% spatial point (®), such that:
Cemperature new(ll)= temperature(ll)+..

%, You can define a coefficient alpha, such that @ = KAt/Ax?

» # % At line 53, apply equation (2) for all the internal points, i = 2, ..., N, — 1 (®) using a
for loop (for 1=2,nx-1)

» % At line 56, apply the boundary conditions at i = 1 and i = N, (@). Either the temperature
at these points remains at 25°C, or you can copy the temperature of the closest internal point.

» » % When it is working, increase the number of time steps nt (at line 20)

» »» Decrease and the increase the time step dt (line 21). What do you observe?
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> Exit Matlab:
exit

» Give back the compute node:
exit

» Logoff the Lengau cluster:

exit
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