TUTORIAL 05:
NUMERICAL ASPECT II: CONSISTENCY AND STABILITY

In this tutorial, we will explore the consistency and stability of a numerical scheme. We will focus on
a simple case study: the one-dimensional advection problem. Using Taylor expansion approximation,
we will define the order of a numerical scheme and test its stability. We will reveal the famous CFL
condition.

1: The 1D advection equation

— From CROCO 3D temperature equation:
T a T
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= We simplify the processes at work by
studying a simple case study, where:

= there is no surface forcing (adiabatic).

= there is a constant current directed toward
the shore u, (homogeneous in y).

= there is no variation of temperature with
depth (barotropic case), i.e. we can cross-out
the vertical turbulent diffusion term.

= there is no horizontal diffusion.

— From the 3D temperature, we need to solve the 1D advection equation:
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= There are only a first-order derivatives in time and space.

= The initial conditions that portray this temperature front are known. The constant parameter u,
(the current adveting the cold condition toward the coast) must be given.

2: Consistency of a numerical scheme

— Same as in #TUTORIALO3, we work on a discretized model grid. We replace the continuous
domain [0, L] X [0, T] by a set of equally spaced mesh points, such that:
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— We need to find a consistent approximation for the equation derivatives: > and >, on our model

grid. This means that the error between the discretized and the real solution approaches 0.
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— In order to quantify the error we make by solving any equation on a spatial and temporal discretised

grid, we use the Taylor series expansion of a continuous function f at a point x close to a reference
point x:
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= If x is close to x, such that x, = x + Ax, we can write:
flx+Ax) = f(x )+f( ) +f”2(fc)Ax2+---+ fr;(lx)Ax" +R(x)
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— Let discretize Py There are 3 different numerical schemes:

@ The downstream (Euler) scheme: 2

tox
@ The upstream scheme: z—i =
a
© The centered scheme: % =

» Estimation of the error we make when we choose the downstream scheme (@):

T(x+ Ax) =T(x) + ,1(| *) +¥Ax2 + .

T'(x) =
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» Estimation of the error we make when we choose the upstream scheme (®):

() ”()

T(x —Ax) = 2.
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» Estimation of the error we make when we choose the centered scheme (©):

T'X) =

= With the centered scheme, the first-order derivative is better resolved than with the first order
schemes.

= The centered scheme is better than upstream and downstream schemes, because the truncation
error is smaller. To improve it, you can increase your resolution (Ax ) or use higher-order schemes.
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3: Stability and convergence of a numerical scheme

— The most important characteristics of a numerical scheme are:

= Jts consistency, i.e. consistent approximation for the derivative in the equations
(truncation error N 0). This is a condition in space.

= |ts stability, i.e. does the error amplify in time? We do not want that the error increase
with time. If this the case, there will be a numerical explosion (a blow-up), and the model will stop.

= If both conditions are respected (consistency and stability) then the discrete solution
converges toward the real solution.

© We will test the stability of a downstream scheme for both — and such that:
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— We inject this formulation into the 1D-advection equation. This leads to:
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= This gives T at time t + At as a function of T at time t. This is an explicit method. It is easy
to solve

— We will perform a yvon Neumann stability analysis of our explicit solution.

= For this we use wave-like structure for T'(x) using complex form: T,, = T, e’k*
= %% j5 a wavy pattern that repeats indefinitely (k provide information
about its zonal extension).

nT,is:

— We rewrite our explicit solution using this new notation.
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— We now define the amplification A, such that:

= We want A < 1, because we do not want the amplitude of oscillation to increase over time,
otherwise the solution would explode.

A= 7\1n+1 —
T,
4117 =

= ||A]|| > 1. This mean that solution increases over time. This scheme is unstable. The downstream
scheme is not a good choice. I will never know if I can go to the beach tomorrow
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® We will use the downstream scheme in space, and the upstream scheme in time. This is the upwind

scheme:
aT T(t + At) — T(t)
at At

of T(x) - T(x—Ax)
ox Ax

= This leads to:

= We adopt the complex form: T,, = T,,e?**). We obtain:

= We again define the amplification A = T’%i'l, such that:
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= This upwind scheme is conditionally stable. Is is
08¢ < 1. This is the famous CFL condition.
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