
                  
 

TUTORIAL 03: 

NUMERICAL ASPECT I: FINITE DIFFERENCES 

 

In this tutorial, we will model the temperature evolution in a case study that reduces to solve the one-

dimensional diffusion equation, also often referred to as a heat equation. 

 

1: The 1D diffusion equation 

 → From CROCO 3D temperature equation: 

𝜕𝑇

𝜕𝑡
+ 𝒖∇𝑇 = ∇ℎ(𝐾𝑇ℎ∇ℎ𝑇) +

𝜕

𝜕𝑧
(𝐾𝑇𝑣

𝜕𝑇

𝜕𝑧
) 

 We simplify the processes at work by 

studying a simple case study, where: 

▪ there is no surface forcing (adiabatic). 

▪ there is no current in the swimming pool, 

i.e. we can cross-out the non-linear advection 

terms (𝒖∇𝑇). 

▪ there is no variation of temperature with 

depth (barotropic case), i.e. we can cross-out 

the vertical turbulent diffusion term. 

▪ the horizontal diffusion coefficient (𝐾𝑇ℎ) is constant. 

→ From the 3D temperature, we need to solve the 1D diffusion equation: 

𝜕𝑇

𝜕𝑡
= 𝐾𝑇𝑣

𝜕2𝑇

𝜕𝑥2
      𝑥 ∈ [𝑂, 𝐿], 𝑡 ∈ [0, 𝑇]  (1) 

 With only a first-order derivative in time, only one initial condition is needed: 𝑇(𝑥, 0) = 𝐼(𝑥). 

 Contrastingly the second-order derivative in space leads to a demand for two boundary conditions. 

 The parameter 𝐾𝑇𝑣 must be given and is referred to as the diffusion coefficient. 

 

 Partial Diffusion Equations (PDE) like this one have a wide range of applications throughout 

physical, biological, and financial sciences. One of the most common applications is propagation of 

heat, where 𝑇(𝑥, 𝑡) represents the temperature of some substance at point 𝑥 and time 𝑡. 

 

 

2: Spatial and temporal discretisation 

 → The first step in the discretization procedure is to replace the domain [0, 𝐿] × [0, 𝑇] by a set of 

mesh points. Here we apply equally spaced mesh points  

𝑥𝑖 = 𝑖∆𝑥, 𝑖 = 1, … , 𝑁𝑥    and     𝑡𝑛 = 𝑛∆𝑡, 𝑛 = 1, … , 𝑁𝑡 

 



                  
 

→ The next step is to replace the derivatives by finite difference approximations. The computationally 

simplest method arises from using a forward difference in time and a central difference in space: 

𝜕𝑇

𝜕𝑡
=

𝑇𝑖
𝑛+1 − 𝑇𝑖

𝑛

∆𝑡
       

𝜕2𝑇

𝜕𝑥2
=

𝑇𝑖+1
𝑛 − 2𝑇𝑖

𝑛 + 𝑇𝑖−1
𝑛
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→ Using this forward Euler scheme, we turn the 1D diffusion equation into a discrete equation, where 

everything at time step 𝑛 is known, such that 𝑇𝑖
𝑛+1 is the only unknown. The formulation is explicit, 

such that: 

𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 + 𝐾𝑇𝑣

∆𝑡

∆𝑥2
(𝑇𝑖+1

𝑛 − 2𝑇𝑖
𝑛 + 𝑇𝑖−1

𝑛 )   (2) 

 

3: Computational algorithm 

 → The computational algorithm consists of the following steps: 

 Initialise the vector state variable (𝑇𝑖
1, 𝑖 = 1, … , 𝑁𝑥), 

 Plot 𝑇1 at every point in the domain, 

 Apply equation (2) for all the internal points, 𝑖 = 2, … , 𝑁𝑥 − 1, 

 Set the boundary values for 𝑖 = 1 and 𝑖 = 𝑁𝑥 (𝑇1
𝑛+1 and 𝑇𝑁𝑥

𝑛+1), 

 Plot 𝑇2 at every point in the domain, 

 Rince and repeat (steps   ). 

 

4: Your turn 

→ To solve the 1D diffusion equation, we will use MATLAB on the Lengau cluster. 

→ Log onto the Lengau cluster by executing the following command from a terminal/konsole: 

ssh -X login@lengau.chpc.ac.za 

        Replace login with your corresponding account number. 

→ Reserve one interactive processor to use Matlab (Step 4 from #TUTORIAL01): 

[login@login2 ~]$ qsubi1 

[login@cnode0220 ~]$  

 

 → Go into your lustre directory and create a directory for this hands-on session: (lustre/diff): 

[login@cnode0220 ~]$ cd lustre 

[login@cnode0220 lustre]$ mkdir diff 

[login@cnode0220 lustre]$ cd diff 

[login@cnode0220 diff]$  

 → Copy a template of the computational algorithm  

[login@cnode0220 diff]$ cp /mnt/lustre/users/sillig/ 

CROCO_TRAINING_Week1/3_Some_files/My_diffusion_1D.m . 

[login@cnode0220 diff]$  

 → Start Matlab with the command matlab -nodesktop (or the alias mat): 

[login@cnode0220 diff]$ matlab -nodesktop & 

[login@cnode0220 diff]$ 

 

 → Edit  My_diffusion_1D.m using the Matlab command edit: 

>> edit My_diffusion_1D.m 

>> 

fo
r 

𝑛
=

1
,…

,𝑁
𝑡
 



                  
 

→ The Matlab script is listed in the following page. You have to complete this script at lines 29, 53 

and 56 (see ➢➢➢ below). Here are the different parts of the algorithm: 

 Line 14: 𝐾 is the constant horizontal diffusion 

coefficient. 

 Lines 16-18: the length of the swimming pool is 

descetized into 21 equaly-spaced points. 

 Lines 20-21: We begin at 𝑛 = 1, with ∆𝑡 = 0.1𝑠. 

 Line 25: The swimming temperature pool is 

initialized at 25°C, everywhere. This corresponds to 

step  of the computationsal algorithm (see #3). 

        ➢➢➢ Complete line 29, to initialise () the 11th 

spatial point at 50°C. 

 Lines 32-38: This is a plot () of the temperature 

in the swimming pool. 

        ➢➢➢ At line 53, start by applying equation (2) for the 11th spatial point (), such that: 
              temperature_new(11)= temperature(11)+... 

               You can define a coefficient alpha, such that 𝛼 = 𝐾∆𝑡/∆𝑥2 

        ➢➢➢  At line 53, apply equation (2) for all the internal points, 𝑖 = 2, … , 𝑁𝑥 − 1 () using a  

for loop (for i=2,nx-1) 

        ➢➢➢  At line 56, apply the boundary conditions at 𝑖 = 1 and 𝑖 = 𝑁𝑥 (). Either the temperature 

at these points remains at 25°C, or you can copy the temperature of the closest internal point.  

        ➢➢➢  When it is working, increase the number of time steps nt (at line 20)  

        ➢➢➢  Decrease and the increase the time step dt (line 21). What do you observe? 

 

5: Exiting 

→ When you are done, exit Matlab and logout from the cluster: 

[login@cnode0220 Run_Clim]$ exit 

logout 

qsub: job 4416950.sched01 completed 

[login@login2 ~]$ exit 

 

  



                  
 

6: Matlab template script 

 

 

 


