TUTORIAL 03:
NUMERICAL ASPECT I: FINITE DIFFERENCES

In this tutorial, we will model the temperature evolution in a case study that reduces to solve the one-
dimensional diffusion equation, also often referred to as a heat equation.

1: The 1D diffusion equation

— From CROCO 3D temperature equation:

aT 0 oT
a_ + uVT Vh(KTthT) + (KT‘U a)
= We simplify the processes at work by

studying a simple case study, where:

= there is no surface forcing (adiabatic).

= there is no current in the swimming pool,
1.e. we can cross-out the non-linear advection
terms (uVT).

= there is no variation of temperature with

depth (barotropic case), i.e. we can cross-out
the vertical turbulent diffusion term.

= the horizontal diffusion coefficient (Kyj,) is constant.

— From the 3D temperature, we need to solve the 1D diffusion equation:
oT 0°T
o = g
= With only a first-order derivative in time, only one initial condition is needed: T (x,0) = I(x).

x € [0,L], tel0,T] (1)

= Contrastingly the second-order derivative in space leads to a demand for two boundary conditions.

= The parameter K;,, must be given and is referred to as the diffusion coefficient.

Partial Diffusion Equations (PDE) like this one have a wide range of applications throughout
physical, biological, and financial sciences. One of the most common applications is propagation of
heat, where T (x, t) represents the temperature of some substance at point x and time t.

2: Spatial and temporal discretisation

— The first step in the discretization procedure is to replace the domain [0, L] X [0,T] by a set of
mesh points. Here we apply equally spaced mesh points

=iAx,i=1,..,N, and ¢t,=nAt,n=1,..,N;
e ¢ o o o B 9o o o o o

-~ ¢ F 3

e o
= o =] o
E po ¢ . © ™
- i
@ ® o Y *—o—® ? H
o » o e o L
t| /] e £ |+ ‘
- s * o
P N - >
< . Gox, " e g
Ax Yi-r X Xin Space At (PR A et Time

_RD e G@{_QRMPCO SH M @% Y [LEO)

DI
m"'" {al and Regiona T2ed €ommunity model

— The next step is to replace the derivatives by finite difference approximations. The computationally
simplest method arises from using a forward difference in time and a central difference in space:

oT TM'—Tr 9*T TR, -2TI'+ T,

at At ax? Ax?
— Using this forward Euler scheme, we turn the 1D diffusion equation into a discrete equation, where
everything at time step n is known, such that T/*** is the only unknown. The formulation is explicit,
such that:

At
Tin+1 — Tin + KTUm (Tiﬁ_l — ZTl.n + Tiril) (2)

3: Computational algorithm

— The computational algorithm consists of the following steps:
O Initialise the vector state variable (T}, i = 1, ..., Ny),

® Plot T! at every point in the domain,

2:- © Apply equation (2) for all the internal points, i = 2, ..., N, — 1,
— | @ Set the boundary values for i = 1 and i = N, (T{**" and T{*1),
Il

= _O Plot T? at every point in the domain,

S

[

< Rince and repeat (steps © @ O).

4: Your turn

— To solve the 1D diffusion equation, we will use MATLAB on the Lengau cluster.
— Log onto the Lengau cluster by executing the following command from a terminal/konsole:
ssh -X [BFf@lengau.chpc.ac.za

V2 Replace with your corresponding account number.

— Reserve one interactive processor to use Matlab (Step 4 from #TUTORIALO1):

[login@login2 ~]$ gsubil Cﬁ
[login@cnode0220 ~]1$ -

— Go into your lustre directory and create a directory for this hands-on session: (WSERAS-YXER $3):

[login@cnode0220 ~]$ ed lustre '®)
[login@cnode0220 lustre]$ mkdir diff NODES
[login@cnode0220 lustrel$ cd diff

[login@cnode0220 diff]s$s

— Copy a template of the computational algorithm

[login@cnode0220 diff]$ cp /mnt/lustre/users/sillig/ N‘,)DES
CROCO_TRAINING Weekl/3 Some files/My diffusion 1D.m . b
[login@cnode0220 diff]s$

— Start Matlab with the command matlab -nodesktop (or the alias mat):

[login@cnode0220 diff]$ matlab -nodesktop & y
[login@cnode0220 diff]s NODES

— Edit My diffusion 1D.musing the Matlab command edit:

>> edit My diffusion 1D.m
>>

D
m” d Repional Dee:

_RD 'Z::U: € CROCO s M @ﬁg

— The Matlab script is listed in the following page. You have to complete this script at lines 29, 53
and 56 (see » > » below). Here are the different parts of the algorithm:

= Line 14: K is the constant horizontal diffusion [Figure 1

coefficient. 3 ;1; ;T@IU; ETT‘L ;m e i
= Lines 16-18: the length of the swimming pool is 1-D Diffusion with » =0.001

descetized into 21 equaly-spaced points.

= Lines 20-21: We begin at n = 1, with At = 0.1s. “

I
=

= Line 25: The swimming temperature pool is
initialized at 25°C, everywhere. This corresponds to
step @ of the computationsal algorithm (see #3).

> > » Complete line 29, to initialise (@) the 11%
spatial point at 50°C.

Temperature

w
e

w
=]

259 &

= Lines 32-38: This is a plot (@) of the temperature o
in the swimming pool.

> > > At line 53, start by applying equation (2) for the 11" spatial point (®), such that:
temperature new(l1l)= temperature(ll)+...

% You can define a coefficient alpha, such that @ = KAt/Ax?

» > » Atline 53, apply equation (2) for all the internal points, i = 2, ..., N, — 1 (©) using a
for loop (for i1=2,nx-1)

»»>» Atline 56, apply the boundary conditions at i = 1 and i = N, (@). Either the temperature
at these points remains at 25°C, or you can copy the temperature of the closest internal point.

» »» When it is working, increase the number of time steps nt (at line 20)

» »» Decrease and the increase the time step dt (line 21). What do you observe?

5: Exiting

— When you are done, exit Matlab and logout from the cluster:

[login@cnode0220 Run Clim]$ exit
logout
gsub: job 4416950.sched0l completed

([MEEENelogin2 ~1$ exit

O

D 'il'i: ﬁﬁcn CO sH M @ﬂ'&

d Regior \E" i COmmunity r

a

Matlab template script

[T= 10 A IV, R S PV I

(== [R RN R I Y R R Y N S -l:n o S R T RV VY] w Wobd bd o RORD ORI R OR ORI ORI R R RS b b R R e e e
Mugtomummbwmuetomugmtwm l-ewmﬂgmﬁwmuewDn--lmmbwl\ll-etom--lmmbwml-e
| | { Y O I I I | [I) I R I | | [[| | |

63 —

B

Simulating the 1-D Diffusion equation by the Finite Difference Method
Numerical scheme used is a first order upwind in time and a second order
..central difference in space (both Implicit and Explicit)

B

% The equation is
% dT/dt = D x laplacian(T)
% F is the Diffusion coefficient

%%

clear z11:

%%

% Parameters

K=0.001: % Diffusion coefficient/viscosity
nx=21: % Number of steps in space(x)
dx=1/(nx-1): % Width of space step

x=0:dx:1; % Range of x (B,1) and specifying the grid points
nt=1: % Number of time steps

dt=0.1; % Width of each time step

%%

% Initial Conditions
temperature=zeros(nx,1)+25.; %--> 25°C everywhere

%%
% Warm or cool a little bit at point 11
% ---> Complete HERE

%Plotting the initial temperature profile
figure(1)

plot(x,temperature, '-bo', 'LineWidth',2, "MarkerFaceColoxr’, 'r', 'MarkerEdgeColor’, 'r", "MarkerSize®

axis([® 1 24 51]):

title({['1-D Diffusion with ‘nu =",num2str(vis)]}):
x1label(X coordinate'):

ylabel(Temperature');

drawnow:

.6);

%%
% Go ahead : loop over time
temperature_new=temperature;

[[for it=1:nt

%Plotting the temperature profile

axis([@ 1 24 517):

title({['1-D Diffusion with “nu =" ,num2str(vis)];['time(ritt) = °,num2str(dt*it)]});
x1label(¥ coordinate’):

ylabel(Temperature’);

drawnow:

% Solve the problem
% ---> Complete HERE (temperature(i)=...)

% Boundaries conditions
% ---> Complete HERE
% Update temperature vector

temperature=temperature_new;

pause(@.1)

~end

nicis® H?:!.)m .t::% QE‘PCO SH M LO EA

CHPC PRAncE

Coastal and Regional Dcean COmmunity model

plot(x,temperature,’'-bo', 'LineWidth',2, 'MarkerFaceColor', 'r', ‘MarkerEdgeColor’, 'r", "‘MarkerSize’

.8);

eb&ri-;pcmn

Uumnad do Ouw-oden\

