TUTORIAL 05:
NUMERICAL ASPECT Il: STABILITY AND PGF




STEP 1: Logging onto the HPC cluster

> From a terminal/konsole:
ssh -X !ﬂﬁ!ﬂ@scp.chpc.ac.za

» Request one node with the alias command gsubil

gsubil
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OBJECTIVES

» Analyse the temperature equation

» Admire my dream swimming pool

» Discretize the swimming into a regular a mesh grid

» Transform continuous derivatives by finite difference approximations

» Visualize your outputs from your first Climatological simulation
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Consistency and Stability: Introduction (1/3)

— From CROCO 3D temperature equation:
aT ad aT
T UVT = V(K Vi T) + = (K, 2

= We simplify the processes at work by
studying a simple case study, where:

= there 1s no surface forcing (adiabatic).

= there 1s a constant current directed toward
the shore uy (homogeneous in y).

= there 1s no variation of temperature with
depth (barotropic case), 1.e. we can cross-out
the vertical turbulent diffusion term.

= there 1s no horizontal diffusion.

— From the 3D temperature, we need to solve the 1D advection equation:

aT aT

—H+uo—=0 x€[ol], te[0T] (1)

= There are only a first-order derivatives in time and space.

= The initial conditions that portray this temperature front are known. The constant parameter u,
(the current adveting the cold condition toward the coast) must be given.



Consistency and Stability: Introduction (2/3)

— Same as in #TUTORIALO3, we work on a discretized model grid. We replace the continuous
domain [0, L] X [0, T] by a set of equally spaced mesh points, such that:

x; =iAx,i=1,..,N, and ¢t,=nAt,n=1,..,N;

n+1|pn+ilgpn+l

T2 T i tns1
mn n T

T2 [T (Tisa tn
n—=1|pn-17n—1

T T i tn-1

X1 Xo e X1 Xi Xig1 o e XN,
\Ax )
) S : - aT aT
— We need to find a consistent approximation for the equation derivatives: o and 5. onour model
X

grid. This means that the error between the discretized and the real solution approaches 0.



Consistency and Stability: Introduction (3/3)

» We have the grid of our model (horizontal and vertical)

» Lets solve this equation (1D-advective equation) :

or  oT

g O i
B ¢ Ui,

» We know T at time t at all x positions,
% We want to compute T at time t+dt

» Lets find a good numerical scheme to solve this problem
% We need to find a consistent approximation for

o . J
the derivatives of the equation : 5 and —



Consistency of a numerical scheme (1/5)

— In order to quantify the error we make by solving any equation on a spatial and temporal discretised
grid, we use the Taylor series expansion of a continuous function f at a point x, close to a reference

point x:
Fow) = 1@+ 22ty =0 + 2 g =02 4t B2 G 2 4 Ry
= [f x is close to x;, such that x, = x + Ax, we can write:
flx+Ax) = f(x) + @ﬂx + gﬂx‘? ot fl(lx) Ax™ + R(x)

. . aT . .
— [ et discretize Py There are 3 different numerical schemes:
X

@ The downstream (Euler) scheme: % = =

T(x — Ax)



Consistency of a numerical scheme (1/5)

— In order to quantify the error we make by solving any equation on a spatial and temporal discretised
grid, we use the Taylor series expansion of a continuous function f at a point x, close to a reference

point x:
Foxo) = £ + 120~ 0+ 102 (g - 02 4t B2y 0 4 RE0)
= If x 1s close to xy, such that x, = x + Ax, we can write:
fx+Ax) = f(x) + @ﬂx + %ﬂxg + o f*:]ﬁx) Ax™ + R(x)

i . aT . .
—s Let discretize " There are 3 different numerical schemes:
X

© The downstream (Euler) scheme: % =

aT
x £

@ The upstream scheme:

T(x — Ax)



Consistency of a numerical scheme (1/5)

— In order to quantify the error we make by solving any equation on a spatial and temporal discretised
grid, we use the Taylor series expansion of a continuous function f at a point x, close to a reference

point x:
Flxo) = £ + 2o~ 0 + 102 (g - 02 4t 2y 0 4 RO1)
= If x is close to x;, such that x, = x + Ax, we can write:
flx+Ax) = f(x) + @ﬂx + @ﬂxz ot fl(lx) Ax™ + R(x)

i . ar . .
—s Let discretize " There are 3 different numerical schemes:

© The downstream (Euler) scheme: % =

aT

@ The upstream scheme: P

""" T(x — Ax)
T _

© The centered scheme: — =




Consistency of a numerical scheme (2/5)

» Estimation of the error we make when we choose the downstream scheme (@):

r'e), . N T (x)

2 'R}
1 o AxT

T(x+Ax) =T(x) +

T'(x) =

T(x)

(1)
‘f—\(ﬁ

T(x — Ax)
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Consistency of a numerical scheme (3/5)

» Estimation of the error we make when we choose the upstream scheme (@):

'), N ' (x)

2 'R}
T T

T(x —Ax) =T(x) —

T'(x) —

T(x — Ax)
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Consistency of a numerical scheme (4/5)

» Estimation of the error we make when we choose the centered scheme (©):

T'(x) —

T(x)

©
T(x + Ax)

T(x — Ax)

12



Consistency of a numerical scheme (5/5)

= With the centered scheme, the first-order derivative is better resolved than with the first order
schemes.

= The centered scheme i1s better than upstream and downstream schemes, because the truncation
error is smaller. To improve it, you can increase your resolution (Ax v) or use higher-order schemes.

T(x)

©
T(x + Ax)

T(x — Ax)
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Stability of a numerical scheme (1/15)

Most important characteristic of a numerical scheme:

v’ Consistence : condition in space @
To improve the truncation error:

High order scheme

Increase the resolution (Ax smaller)

v’ Stability : condition in time
Does the error amplify during time?
if yes — numerical explosion / Blow Up
if no — stability

— Consistence + Stability — Convergence of the discretized
solution toward the real solution, V t (Lax Theorem)
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Stability of a numerical scheme (2/15)

© We will test the stability of a downstream scheme for both: % and %, such that:

orT T{t+At)—T() T/ —1T1
at At At

aT T(x+A4ax)—-T(x) Tj,—T"
ax Ax N Ax

— We inject this formulation into the 1D-advection equation. This leads to:

or T
ot T Yogx T -

+
_}Tlﬂ 1:

= This gives T at time t + At as a function of T at time ¢t. This 1s an explicit method. It is easy

to solve
15



Stability of a numerical scheme (3/15)

— We will perform a von Neumann stability analysis of our explicit solution.

= For this we use wave-like structure for T'(x) using complex form: T,, = T,,e**

= ¢'F* is a wavy pattern that repeats indefinitely (k provide information

about 1ts zonal extension).

= T, is the amplitude of the wavy pattern|

— We rewrite our explicit solution using this new notation.

T ikx _
Tn+1€ -

uu.ﬂt

Ax

With € =

> 0, the Courant number.
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Stability of a numerical scheme (4/15)

— We now define the amplification A, such that:

= We want A < 1, because we do not want the amplitude of oscillation to increase over time,
otherwise the solution would explode.

T-ﬁn+1 = A Tn = A? Tn—l == A" Tﬂ
T |
A= ”T“ =1—C(e™*™ —1) =1 — C(cos(kAx) — i sin(kAx) — 1)
n

=1+ C(1 — cos(kAx)) — i C sin(kAx)

real part imaginary part

|All? = real par?? + imaginary part?
14117 =
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Stability of a numerical scheme (5/15)

© We will test the stability of a downstream scheme for both: % and %, such that:

oT T(t+At)—T(t) T/ -1 O Tx+Ax)—T(x) Ty T
at At At ax Ax T Ax

— We now define the amplification A, such that:

= We want A < 1, because we do not want the amplitude of oscillation to increase over time,
otherwise the solution would explode.

JA|I? =1+ (1 —cos (kAx)) X 2C X (1 + C)

- | =>() =>() STEP2D:  ABNORMAL JOB END

BLOW UP

|A||?> > 1 = Inconditionnaly unstable scheme
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Stability of a numerical scheme (6/15)

® We will use the downstream scheme in space, and the upstream scheme in time. This is the upwind

scheme:
aT T(t+At)—T({) T/t —T" oT T()-T(x—-Ax) T"-TI,
at At T At Ix Ax T Ax

— We inject this formulation into the 1D-advection equation. This leads to:

or T
ot TYogx T -

+
_}Tlﬂ 1:

= This gives T at time t + At as a function of T at time t. This is an explicit method. It is easy
to solve
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Stability of a numerical scheme (7/15)

— We will perform a von Neumann stability analysis of our explicit solution.

= For this we use wave-like structure for T'(x) using complex form: T,, = T,,e**

= ¢'F* is a wavy pattern that repeats indefinitely (k provide information

about 1ts zonal extension).

= T, is the amplitude of the wavy pattern|

— We rewrite our explicit solution using this new notation.

T ikx _
Tn+1€ -

uu.ﬂt

Ax

With € =

> 0, the Courant number.
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Stability of a numerical scheme (8/15)

— We now define the amplification A, such that:

= We want A < 1, because we do not want the amplitude of oscillation to increase over time,
otherwise the solution would explode.

T o1 =AT,=A*T,_ = =A"T,

=~

R C(1—e k) =1 ¢ (1 — (cos (kAx) — isin(kﬂx)))

<

=1—C(1 — cos(kAx)) — iC sin(kAx)

real part imaginary part

|All? = real part? + imaginary parf’
1A]]? =
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Stability of a numerical scheme (9/15)

— We now define the amplification A, such that:

= We want A < 1, because we do not want the amplitude of oscillation to increase over time,
otherwise the solution would explode.

T o1 =AT,=A*T,_ = =A"T,

=~

R C(1—e k) =1 ¢ (1 — (cos (kAx) — isin(kﬂx)))

<

=1—C(1 — cos(kAx)) — iC sin(kAx)

real part imaginary part

|All? = real part? + imaginary parf’
1A]]? =
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Stability of a numerical scheme (10/15)

In the case of the "Upwind" scheme? Lnt—1a 4 uDT'f —1is —

ot or
Amplification: |4l =1+ 2C(1 — C)(cos kox —1)

0

|Al<1ifC<1 —  conditionnaly stable if CFL<1

Courant-Friedrichs-Lewy
(CFL) stability criterion :

c—¥ 4
X

But humerical attenuation /diffusion ....
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Stability of a numerical scheme (11/15)

» Leapfrog / Centered 1D Advection equation:
TPt =T,m - C(Ty," - T") ; €= updt / dx or AT _
Conditionally stable: CFL condition C < 1 ot Ox

but dispersive (computational modes)

» Downstream (Euler) / Cm‘should be non-dispersive :

Tri=Tn" -C(T,,"-T.,") the phase speed w/k and
Unconditionally unstable group speed dw/bk are equal
and constant (u,)
» Upstream
TMl=Tn -C(T"-T.."), C>0 2nd order approx to the
Conditionally stable, 9,0 1 cO.0 — E‘i‘ﬁ(l _ %jﬁﬂg _o.
£

not dispersive but diffusive

(monotone linear scheme)
24



Stability of a numerical scheme (12/15)

eeeeeeeeeeeeee

—

A numerical scheme can be:

 Dispersive: ripples, overshoot
and extrema (centered)

 Diffusive (upstream)

« Unstable (Euler/centered)

N\
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Stability of a numerical scheme (13/15)

Time=1 CFL=024 Num. pnts.=100

- Analytic solution
— upwind-1

— upwind-3

— DST-3

— Analytic solution
— centered-2
— centered-4
— Lax-Wendroff

= Analytic solution

—— minmod

— Superbee

—— wvan Leer (MC)
van Leer (alb)

1L ' ' ' ' ' ' ' ' ' || e Analytic solution
___ DST Sweby u=1
— 1| —— DST Sweby u(c)
0
| 1 1 | | | | 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Stability of a numerical scheme (14/15)

» 3" order, upstream-biased advection scheme : allows the
generation of steep gradient, with a weak dispersion and weak
diffusion.

» No need to impose explicit diffusion/ viscosity to avoid
numerical noise (in case of 3D modeling)

» Effective resolution is improved

27



Stability of a numerical scheme (15/15)

Most important characteristic of a numerical scheme:

v’ Consistence : condition in space @
To improve the truncation error:

High order scheme

Increase the resolution (Ax smaller)

v’ Stability : condition in time
Does the error amplify during time?
if yes — numerical explosion / Blow Up
if no — stability

— Consistence + Stability — Convergence of the discretized
solution toward the real solution, V t (Lax Theorem)
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Pressure Gradient Force (1/6)

The sigma coordinates represent with good accuracy the bottom and the surface layers.

BUT| the sigma coordinate system is also associated with errors in the estimation or the Pressure
Gradient Force.

» In the momentum conservation equations, we find a term associated with the horizontal
gradients of the pressure field:

Ju 1 0P 0 ou
Lt idVu—fv = —— -V, (K. V —(K L.—)
5 +u.Vu— fv P + Vi (K. Vi) + 5, (Favs
Jv 1 0P 9, v
- _‘. —_— = v 1 K .V 1 e K T
8t+uVU+fu pg8y+ w (K jU)—Faz( M 83)
= This horizontal gradient must be computed at constant z. It can be written:
1 dP
Po dx -4

» We want to transform the horizontal derivative of P between z and s coordinates.

29



Pressure Gradient Force (2/6)

= This horizontal gradient must be computed at cnnsta‘nt Z. It can be written:

1 dP

po 0x

zZ

» We want to transform the horizontal derivative of P between z and s coordinates. With a
little bit of geometry, we can show that:

3_(;’) _ $c — ¢a Sz, 6z — 0
oz ox
1 0“5% 3 ¢c — ¢ [0z $B — dA
A ¢ _ — —
4% 57 - 6z (Jm)Jr oz
52 20| _ 00 (0z] ), 06
N dz|, 0z \ Oz, oz |,
¢'A ox ¢B Z @ _@ _@%
dz|, Oz|, 0z dz|,
= |t follows that:
10P]  10P] 14Paz
“podxl, g oxl, " pp 0z oxl,
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Pressure Gradient Force (3/6)

= We obtained:

1opPp  10P +1ﬂP@z
Pﬂaxz_ pﬂaxs pﬂazaxs
10Pp  10P +16Pasaz
pPo0xl,  poOxl, pgds 0z dxl,

., 0 1 . . . . .
= With a_z ~ the horizontal pressure gradient is written as the difference between 2 terms:

11dPoz

. THpy ds ox

1 0P

z_ Po dx

PGFin @ PGF along @ Correction term to eliminate the vertical
z coordinate iso-sigma surfaces gradient contained in the first term

1 dP

Po 0x

&

. i i : a
» On sigma level can have important differences of depth on a short scale é
5

= On steep slopes (sharp topographic changes such as the continental slope), terms @ and
(2 are both large, with comparable amplitude. One small error in their estimation results in important

errors in the PGF calculous. This is called the Truncation error.
31



Pressure Gradient Force (4/6)

» To control the amplitude of the truncation error, we need to respect this condition:

0P| _oP oz
dx|, 0z dx|_ .
N
dx 0z dx
5 5
» If the truncation error on the PGF is important, it can result in artificial “numerical” currents

over the slopes.

= To check if there is an error in your configuration, you can run a neutral simulation
(no forcing, no currents). If you run the model, you should have no current in the outputs.
BUT| if the pressure gradient errors are substantial, you will observer geostrophic currents over the
slopes.

» To reduce the pressure gradient error...
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Pressure Gradient Force (5/6)

* Smoothing the topography using a
nonlinear filter and a criterium: ., r=Ah/h<0.2

e Using a density formulation ———

1 P 1 aP

p
I#_E fﬂx

 Using high order schemes to reduce o) K g [ap

the truncation error (4th order, o0 % po
McCalpin, 1994) ;

o 02

a7 ix

Je

ox

e Gary, 1973: substractlng a reference horizontal averaged value
from density (p" = p - p,) before computing pressure gradient

e Rewritting Equation of State: reduce passive compressibility effects
on pressure gradient
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Pressure Gradient Force (6/6)

» r=A4Ah/h is the slope of the logarithm of h
» One method (ROMS) consists in smoothing In(h) untilr<r,

000000

= Res: 5 km .
W enpergme (O

Standard Deviation [m]

P T T ™ S ™ E S
e B8 B 8 B B 8 8 8 &

. Smoothing Error

« Res: ikm
Senegal | <02
Bathymetry ..
Profil
Bathymetfy

/ Convergence at ~ 4
' km resolution

= Grid Resolution [de(]
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STEP 5: Visualising model outputs

» Launch Matlab and edit the following file:

>> edit croco _diags.m
>> croco_diags

» Make your first plots:
>> plot diags

» Visualise the outputs with croco_gui

>> croco_guil

& GCROCO s Qg




> Exit Matlab:
exit

» Give back the compute node:
exit

» Logoff the Lengau cluster:

exit

& GCROCO s Qg




