
                  
 

TUTORIAL 05: 

NUMERICAL ASPECT II: CONSISTENCY AND STABILITY 

 

In this tutorial, we will explore the consistency and stability of a numerical scheme. We will focus on 

a simple case study: the one-dimensional advection problem. Using Taylor expansion approximation, 

we will define the order of a numerical scheme and test its stability. We will reveal the famous CFL 

condition. 

 

1: The 1D advection equation 

 → From CROCO 3D temperature equation: 

𝜕𝑇

𝜕𝑡
+ 𝒖∇𝑇 = ∇ℎ(𝐾𝑇ℎ∇ℎ𝑇) +

𝜕

𝜕𝑧
(𝐾𝑇𝑣

𝜕𝑇

𝜕𝑧
)  

 We simplify the processes at work by 

studying a simple case study, where: 

▪ there is no surface forcing (adiabatic).  

▪ there is a constant current directed toward 

the shore 𝑢0 (homogeneous in 𝑦). 

▪ there is no variation of temperature with 

depth (barotropic case), i.e. we can cross-out 

the vertical turbulent diffusion term. 

▪ there is no horizontal diffusion. 

→ From the 3D temperature, we need to solve the 1D advection equation: 

𝜕𝑇

𝜕𝑡
+ 𝑢0

𝜕𝑇

𝜕𝑥
= 0      𝑥 ∈ [𝑂, 𝐿], 𝑡 ∈ [0, 𝑇]  (1) 

 There are only a first-order derivatives in time and space.  

 The initial conditions that portray this temperature front are known. The constant parameter 𝑢0  

(the current adveting the cold condition toward the coast) must be given. 

 

 

2: Consistency of a numerical scheme 

→ Same as in #TUTORIAL03, we work on a discretized model grid. We replace the continuous 

domain [0, 𝐿] × [0, 𝑇] by a set of equally spaced mesh points, such that: 

𝑥𝑖 = 𝑖∆𝑥, 𝑖 = 1, … , 𝑁𝑥    and     𝑡𝑛 = 𝑛∆𝑡, 𝑛 = 1, … , 𝑁𝑡 

 

 → We need to find a consistent approximation for the equation derivatives: 
𝜕𝑇

𝜕𝑡
 and 

𝜕𝑇

𝜕𝑥
 on our model 

grid. This means that the error between the discretized and the real solution approaches 0.  



                  
 

→ In order to quantify the error we make by solving any equation on a spatial and temporal discretised 

grid, we use the Taylor series expansion of a continuous function 𝑓 at a point 𝑥0 close to a reference 

point 𝑥: 

𝑓(𝑥0) = 𝑓(𝑥) +
𝑓′(𝑥)

1!
(𝑥0 − 𝑥) +

𝑓′′(𝑥)

2!
(𝑥0 − 𝑥)2 + ⋯ +    

𝑓𝑛(𝑥)

𝑛!
(𝑥0 − 𝑥)𝑛 + 𝑅(𝑥) 

           If 𝑥 is close to 𝑥0, such that 𝑥0 = 𝑥 + ∆𝑥, we can write: 

𝑓(𝑥 + ∆𝑥) = 𝑓(𝑥) +
𝑓′(𝑥)

1!
∆𝑥 +

𝑓′′(𝑥)

2!
∆𝑥2 + ⋯ +    

𝑓𝑛(𝑥)

𝑛!
∆𝑥𝑛  + 𝑅(𝑥) 

 

→ Let discretize 
𝜕𝑇

𝜕𝑥
. There are 3 different numerical schemes: 

 The downstream (Euler) scheme: 
𝜕𝑇

𝜕𝑥
=

                                                               
 

 The upstream scheme:                  
𝜕𝑇

𝜕𝑥
=

                                                               
 

 The centered scheme:                    
𝜕𝑇

𝜕𝑥
=

                                                               
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

➢ Estimation of the error we make when we choose the downstream scheme (): 

𝑇(𝑥 + ∆𝑥) = 𝑇(𝑥) +
𝑇′(𝑥)

1!
∆𝑥 +

𝑇′′(𝑥)

2!
∆𝑥2 + ⋯ 

 

𝑇′(𝑥) =
                                                               

 

 

 

  



                  
 

➢ Estimation of the error we make when we choose the upstream scheme (): 

𝑇(𝑥 − ∆𝑥) = 𝑇(𝑥) −
𝑇′(𝑥)

1!
∆𝑥 +

𝑇′′(𝑥)

2!
∆𝑥2 + ⋯ 

 

𝑇′(𝑥) =
                                                               

 

 

 

 

 

 

 

 

 

 

➢ Estimation of the error we make when we choose the centered scheme (): 

𝑇′(𝑥) =
                                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          With the centered scheme, the first-order derivative is better resolved than with the first order 

schemes. 

 

 The centered scheme is better than upstream and downstream schemes, because the truncation 

error is smaller. To improve it, you can increase your resolution (∆𝑥 ↘) or use higher-order schemes. 

 

 

 

 

 

 

 

 

 

 

 

 



                  
 

3: Stability and convergence of a numerical scheme 

 → The most important characteristics of a numerical scheme are: 

▪ Its consistency, i.e. consistent approximation for the derivative in the equations 

(truncation error ↘ 0). This is a condition in space.  

▪ Its stability, i.e. does the error amplify in time? We do not want that the error increase 

with time. If this the case, there will be a numerical explosion (a blow-up), and the model will stop. 

 If both conditions are respected (consistency and stability) then the discrete solution 

converges toward the real solution. 

 We will test the stability of a downstream scheme for both: 
𝜕𝑇

𝜕𝑡
 and 

𝜕𝑇

𝜕𝑥
, such that: 

𝜕𝑇

𝜕𝑡
≈

𝑇(𝑡 + ∆𝑡) − 𝑇(𝑡)

∆𝑡
=

                                                             
 

𝜕𝑇

𝜕𝑥
≈

𝑇(𝑥 + ∆𝑥) − 𝑇(𝑥)

∆𝑥
=

                                                             
 

 

→ We inject this formulation into the 1D-advection equation. This leads to: 

𝜕𝑇

𝜕𝑡
+ 𝑢0

𝜕𝑇

𝜕𝑥
= 0                      → 

                                               → 

         This gives 𝑇 at time 𝑡 + ∆𝑡 as a function of 𝑇 at time 𝑡. This is an explicit method. It is easy 

to solve 

→ We will perform a von Neumann stability analysis of our explicit solution.  

         For this we use wave-like structure for 𝑇(𝑥) using complex form: 𝑇𝑛 = 𝑇̂𝑛𝑒𝑖𝑘𝑥 

▪ 𝑒𝑖𝑘𝑥 is a wavy pattern that repeats indefinitely (𝑘 provide information 

about its zonal extension). 

▪ 𝑇̂𝑛 is :  

→ We rewrite our explicit solution using this new notation. 

𝑇̂𝑛+1𝑒𝑖𝑘𝑥 = 

 

 

 

With 𝐶 =
𝑢0∆𝑡

∆𝑥
> 0, the Courant number. 



                  
 

→ We now define the amplification A, such that:  

𝐴 =
𝑇̂𝑛+1

𝑇̂𝑛

 

         We want 𝐴 < 1, because we do not want the amplitude of oscillation to increase over time, 

otherwise the solution would explode. 

𝐴 =
𝑇̂𝑛+1

𝑇̂𝑛

= 

 

 

 

 

 

 

 

 

 

 

‖𝐴‖2 = 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ‖𝐴‖ > 1. This mean that solution increases over time. This scheme is unstable. The downstream 

scheme is not a good choice. I will never know if I can go to the beach tomorrow 



                  
 

 We will use the downstream scheme in space, and the upstream scheme in time. This is the upwind 

scheme: 

𝜕𝑇

𝜕𝑡
≈

𝑇(𝑡 + ∆𝑡) − 𝑇(𝑡)

∆𝑡
=

                                                             
 

𝜕𝑇

𝜕𝑥
≈

𝑇(𝑥) − 𝑇(𝑥 − ∆𝑥)

∆𝑥
=

                                                             
 

 

         This leads to: 

 

 

 

 

 

 

         We adopt the complex form: 𝑇𝑛 = 𝑇𝑛̂𝑒𝑖𝑘(𝑥). We obtain: 

 

 

 

 

 

         We again define the amplification 𝐴 =
𝑇𝑛+1̂

𝑇𝑛̂
, such that:  

𝐴 =
𝑇𝑛+1̂

𝑇𝑛̂

= 

 

 

 

 

‖𝐴‖2 = 

 

 

 

 

 

 

 This upwind scheme is conditionally stable. Is is 

stable if 𝐶 =
𝑢0∆𝑡

∆𝑥
< 1. This is the famous CFL condition. 


