
TUTORIAL 05:

NUMERICAL ASPECT II: STABILITY AND PGF



STEP 1: Logging onto the HPC cluster

➢ From a terminal/konsole:

➢ Request one node with the alias command qsubi1

ssh -X login@scp.chpc.ac.za

qsubi1



OBJECTIVES

➢Analyse the temperature equation

➢Admire my dream swimming pool

➢ Discretize the swimming into a regular a mesh grid

➢ Transform continuous derivatives by finite difference approximations

➢ Visualize your outputs from your first Climatological simulation



Consistency and Stability: Introduction (1/3)
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Consistency and Stability: Introduction (2/3)
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Consistency and Stability: Introduction (3/3)
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➢ We have the grid of our model (horizontal and vertical)

➢ Lets solve this equation (1D-advective equation) :

➢ We know T at time t at all x positions,

 We want to compute T at time t+dt

➢ Lets find a good numerical scheme to solve this problem

 We need to find a consistent approximation for 

the derivatives of  the equation :              and



Consistency of a numerical scheme (1/5)
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Consistency of a numerical scheme (1/5)
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Consistency of a numerical scheme (1/5)
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Consistency of a numerical scheme (2/5)
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Consistency of a numerical scheme (3/5)
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Consistency of a numerical scheme (4/5)
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Consistency of a numerical scheme (5/5)
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Stability of a numerical scheme (1/15)
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Most  important  characteristic of a numerical scheme: 

✓ Consistence : condition in space ✓

To improve the truncation error: 
High order scheme
Increase the resolution (∆x smaller)

✓ Stability : condition in time
Does the error amplify during time?

if yes  numerical explosion / Blow Up
if no  stability

 Consistence + Stability  Convergence  of the discretized 
solution toward the real solution,  t (Lax Theorem)



Stability of a numerical scheme (2/15)
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Stability of a numerical scheme (3/15)
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Stability of a numerical scheme (4/15)
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Stability of a numerical scheme (5/15)
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Stability of a numerical scheme (6/15)
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Stability of a numerical scheme (7/15)
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Stability of a numerical scheme (8/15)
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Stability of a numerical scheme (9/15)
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Stability of a numerical scheme (10/15)
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But numerical attenuation /diffusion  ….

Courant-Friedrichs-Lewy 
(CFL) stability criterion :
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Stability of a numerical scheme (11/15)
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➢ Leapfrog / Centered
Ti

n+1 = Ti
n-1 - C (Ti+1

n - Ti-1
n)  ; C = u0 dt / dx

Conditionally stable: CFL condition C < 1 
but dispersive (computational modes)

➢ Downstream (Euler) / Centered
Ti

n+1 = Ti
n - C (Ti+1

n - Ti-1
n)

Unconditionally unstable

➢ Upstream
Ti

n+1 = Ti
n - C (Ti

n - Ti-1
n) ,  C > 0

Ti
n+1 = Ti

n - C (Ti+1
n - Ti

n) ,  C < 0
Conditionally stable, 
not dispersive but diffusive

(monotone linear scheme)

1D Advection equation:

2nd order approx to the 
modified equation:

should be non-dispersive : 
the phase speed ω/k and 
group speed δω/δk are equal 
and constant (uo)



Stability of a numerical scheme (12/15)
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A numerical scheme can be:

• Dispersive: ripples, overshoot 

and extrema (centered)

• Diffusive (upstream)

• Unstable (Euler/centered)



Stability of a numerical scheme (13/15)
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Stability of a numerical scheme (14/15)
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➢ 3rd order, upstream-biased advection scheme : allows the 
generation of steep gradient, with a weak dispersion and weak 
diffusion.
➢ No need to impose explicit diffusion/ viscosity to avoid 
numerical noise (in case of 3D modeling)
➢ Effective resolution is improved



Stability of a numerical scheme (15/15)

28

Most  important  characteristic of a numerical scheme: 

✓ Consistence : condition in space ✓

To improve the truncation error: 
High order scheme
Increase the resolution (∆x smaller)

✓ Stability : condition in time
Does the error amplify during time?

if yes  numerical explosion / Blow Up
if no  stability

 Consistence + Stability  Convergence  of the discretized 
solution toward the real solution,  t (Lax Theorem)



Pressure Gradient Force (1/6)
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Pressure Gradient Force (2/6)
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Pressure Gradient Force (3/6)
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Pressure Gradient Force (4/6)
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Pressure Gradient Force (5/6)
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 Smoothing the topography using a 
nonlinear filter and a criterium: 

 Using a density formulation

 Using high order schemes to reduce 
the truncation error (4th order, 
McCalpin, 1994)

r = Δh / h < 0.2

 Gary, 1973: substracting a reference horizontal averaged value 
from density (ρ’= ρ - ρa) before computing pressure gradient

 Rewritting Equation of State: reduce passive compressibility effects 
on pressure gradient



Pressure Gradient Force (6/6)
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➢ r = Δh / h is the slope of the logarithm of h

➢ One method (ROMS) consists in smoothing ln(h) until r < rmax
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STEP 5: Visualising model outputs 

➢ Launch Matlab and edit the following file:

➢Make your first plots:

➢ Visualise the outputs with croco_gui

➢ Enjoy!!!

>> edit croco_diags.m

>> croco_diags

>> plot_diags 

>> croco_gui



STEP 6: Exiting

➢ Exit Matlab:

➢ Give back the compute node:

➢ Logoff the Lengau cluster:

exit

exit

exit


