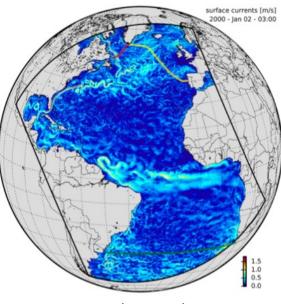
CROCO – training 2023

Introduction

CROCO – training 2023 - Barcelonette

Why ocean modelling ?

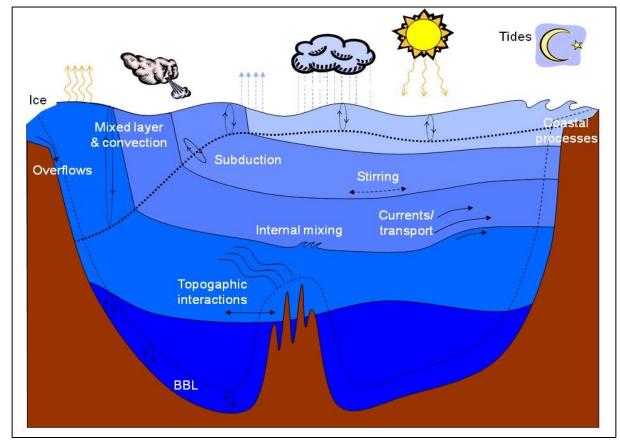

- Fundamental research : understand ocean functioning
- Applied research and Operational oceanography : ocean forecast, pollution, water quality, halieutic resources, ...
- Climate modeling
- ...

Advantages :

. . .

- Cost effective
- Synoptic 4D view
- Equilibrium diagnostics
- Test hypothesis
- Hindcast and forecast
- Coupling with different models

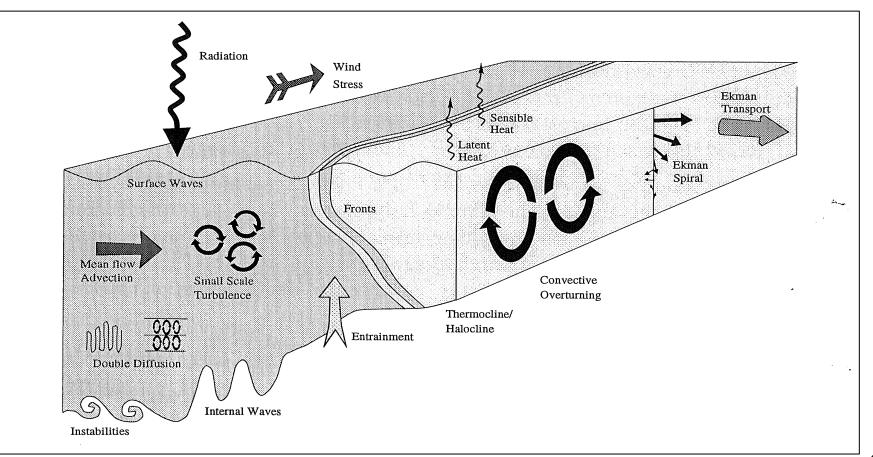
Global model SSH



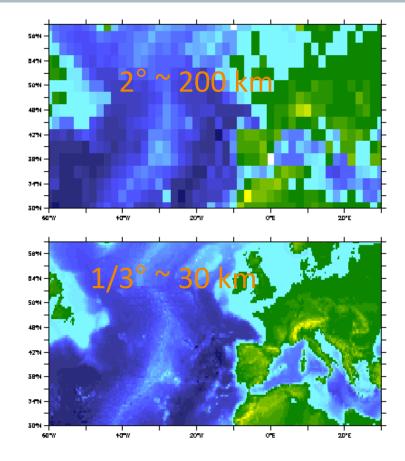
Croco 3km resolution

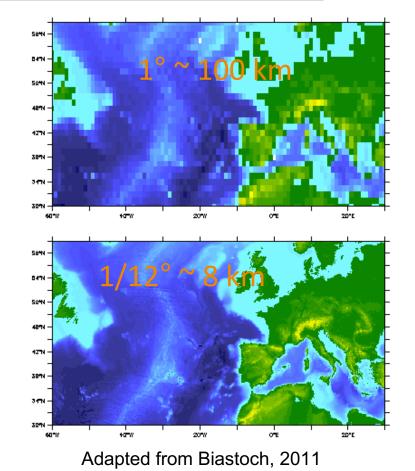
regional model SST (Gula et al)

Many ocean process to model

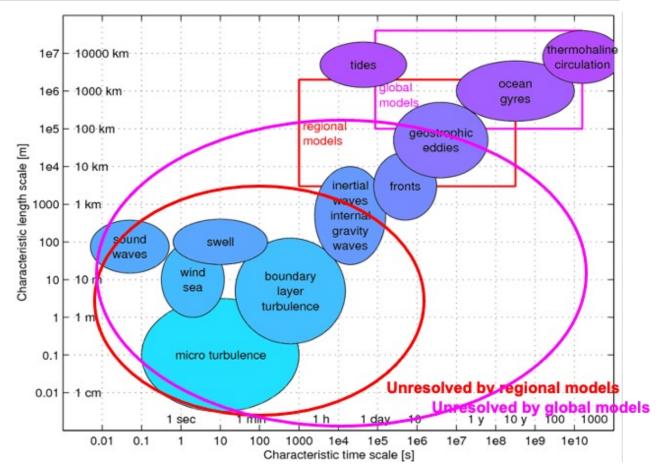


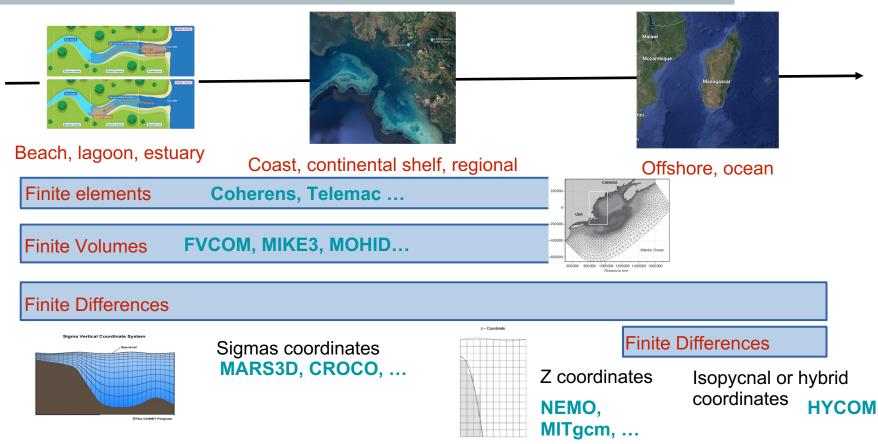
Source http://www.gfdl.noaa.gov/ocean-models-at-gfdl

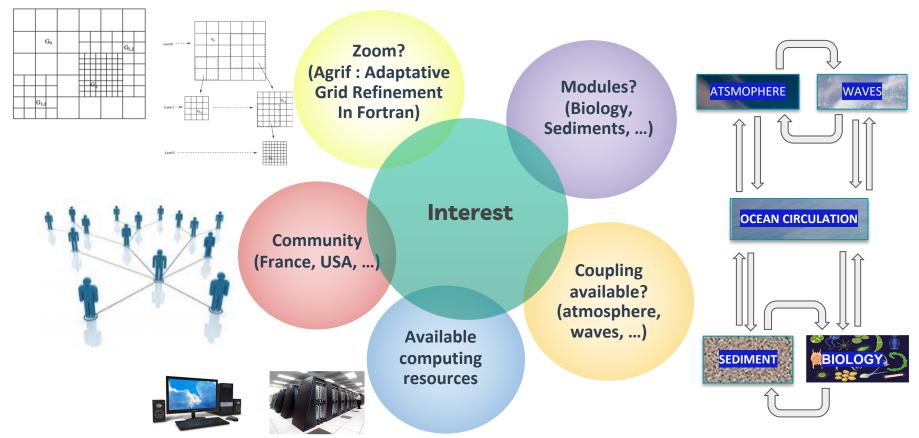

Many ocean process to model



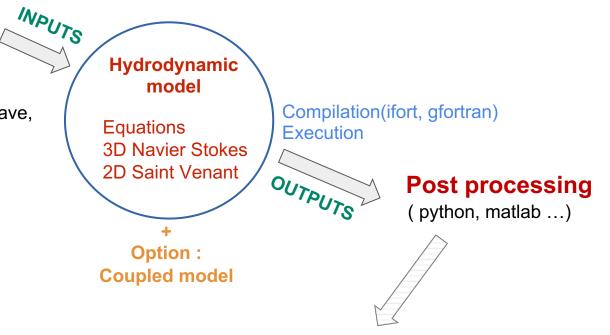
About ocean processes and model resolution




About ocean processes and model resolution

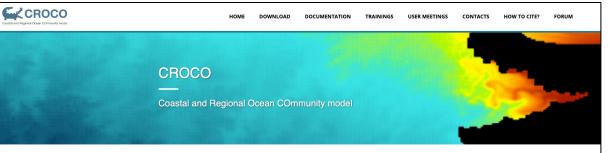

Various type of ocean model depending on space discretization techniques

Choice of an ocean model



Préprocessing

- Grid definition
- Bathymetry
- Initial condition
- Boundary conditions
- Forcing (atmosphere, wave, rivers...)
- Parameters ...



Confrontation to in-situ data, calibration, validation

About CROCO ocean model

croco-ocean.org

CROCO, Coastal and Regional Ocean COmmunity model

CROCD is a new oceanic modeling system built upon ROMS_AGRIF and the non-hydrostatic kernel of SNH (under testing), gradually including algorithms from MARS3D (sediments) and HYCOM (vertical coordinates). An important objective for CROCO is to resolve very fine scales (especially in the coastal area), and their interactions with larger scales. It is the oceanic component of a complex coupled system including various components, e.g., atmosphere, surface waves, marine sediments, biogeochemistry and ecosystems.

CROCO Version 1.3 official release is now available in the Download section. It includes new capabilities as nonhydrostatic kernel, ocean-wave-atmosphere coupling, sediment transport, new high-order numerical schemes for advection and mixing, a dedicated I/O server (XIOS), new online diagnoses, and new options for coastal configurations. A new version of CROCO_TOOLS accompany this release. CROCO will keep evolving and integrating new capabilities in the following years.

CROCO project: version 1.3

CROCO-Sud

CROCO-Sud (https://gdri-croco.cnrs.fr/) is a GdRI (International Consortium) that is part of the GdR (Research Group) CROCO.

This network will allow formalizing and strengthen the links between the French CROCO community and partners from the global South by formally integrating the latter in the community and by organizing workshops and training sessions, with an approach for structuring North-South and South-South collaborations. This will increase CROCO's outreach, addressing issues relevant to sustainable science.

Structuring, training and support to new users, especially from the global south, has always been an important ambition for ROMS, as it is for CROCO. This IRD-supported project will carry this ambition further and fully integrate partners for the global south into the CROCO community (from both development and application poin of views).

News

Save the date! CROCO User Meeting #2 will be held in Marseille, France, on the 13th-15th September 2023. See <u>dedicated page</u>

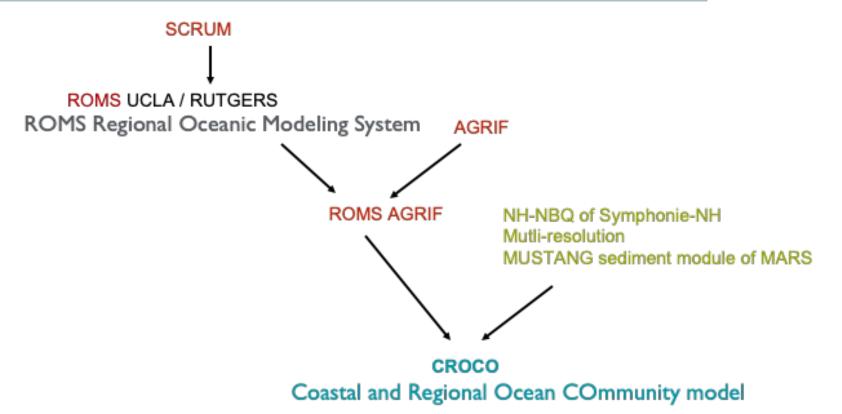
Releases

New release CROCO v1.3

Mailing list & Forum

We strongly encourage all users to join our mailing list (low traffic; announcements, updates, bug fixes):

croco-users@inria.fr


To **subscribe**, simply send an email to sympa_inria@inria.fr with the subject: subscribe croco-users@inria.fr First name Last name. Leave the body of the message empty.

To **unsubscribe**, simply send an email to sympa_inria@inria.fr with the subject: unsubscribe crocousers@inria.fr

Visit <u>CROCO users forum</u> for discussions, and questions about the code and tools

CROCO history

CROCO philosophy

Community development

Continuous development

Stable releases: every 1 / 1.5 year

Help/support through a forum

High-level numerical schemes

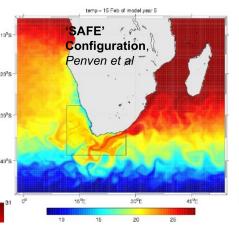
Tools for an easy built of regional and coastal configurations

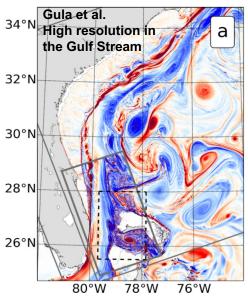
Adapted to IRD

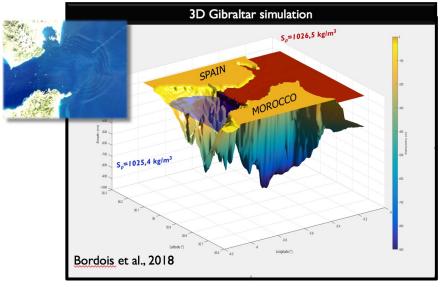
Realistic complex modelling

Circulation forced by waves

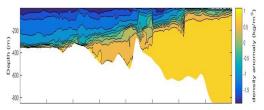
Coupling with atmosphere and waves


Coupling with biogeochemistry and ecology


LES / DNS

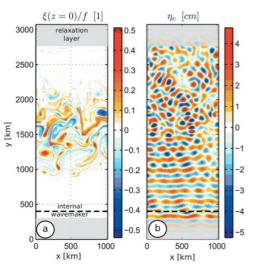

CROCO examples

For starting, here are a few examples of use of CROCO

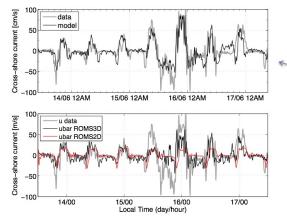


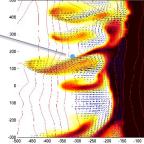
NBQ mode

Gibraltar IGW

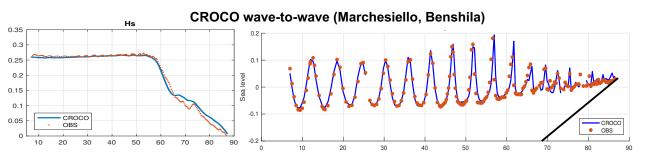


CROCO examples

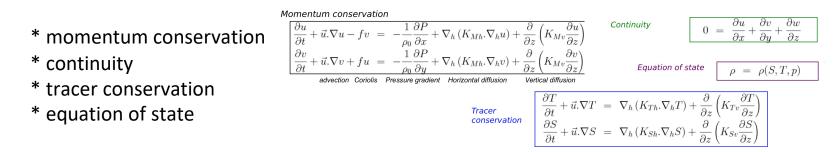



For starting, here are a few examples of use of CROCO

Ponte & Klein, 2015,, internal tides and eddies



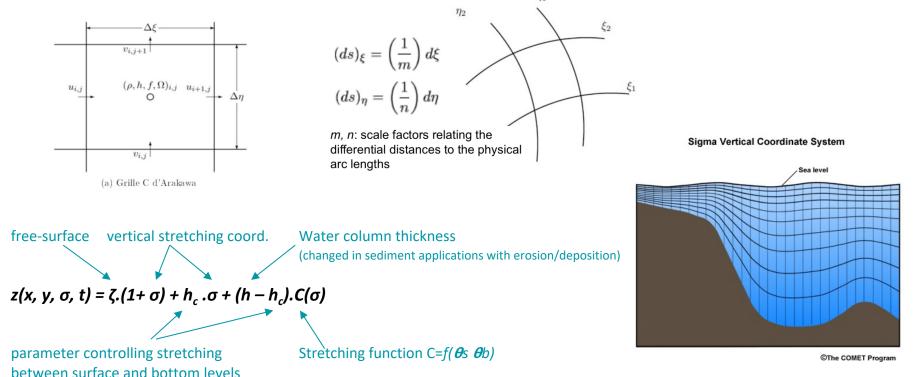
Marchesiello et al. 2015, Rip current



• Solves the Primitive Equations in an Earth-centered rotating environment:

- Boussinesq hystrostatic mode, and non-hydrostatic, non-Boussinesq mode (NBQ) available
- Split-explicit time-stepping: see dedicated course

* short time steps are used to advance the surface elevation and barotropic momentum

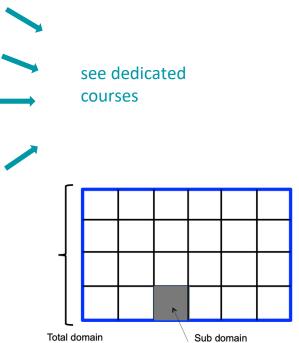

* much larger time step used for temperature, salinity, and baroclinic momentum

* for **NBQ** mode: barotropic mode solver is replaced by a fully 3D fast mode solver, resolving all waves down to **acoustic waves** (with sound speed that can be decreased to the maximum wave velocity one wants to solve)

CROCO numerics

CROCO grid is discretized in coastline- and terrain-following curvilinear coordinates with freesurface, on an Arakawa-C grid η_1

High-order numerics

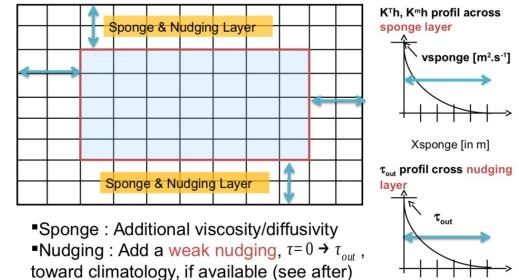

High-order numerical schemes: 3rd and 5th-order advection schemes

Rotated tensors to reduce diapycnal mixing

KPP and GLS mixing parameterizations

Optimization

Parallelization by two-dimensional subdomain partitioning OPEN-MP and MPI



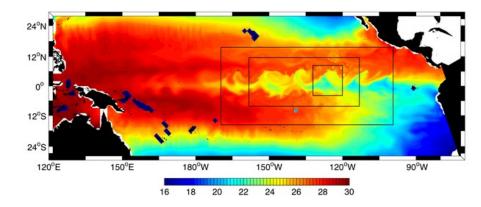
Idealized conditions

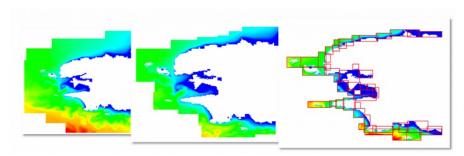
- Several idealized test cases are provided
- Analytical forcing and boundary conditions can be set

Regional configurations

- Open boundaries: active, implicit, upstream-biased radiation conditions
- Climatological or interannual surface and boundary conditions
- Bulk formulations for atmospheric forcing
- Rivers, and tidal forcing available

Xsponge [in m] 18

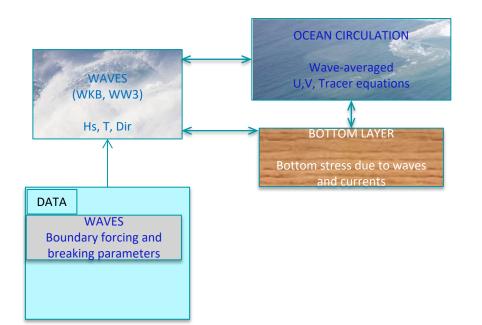



Nesting with AGRIF

- Grid refinement with the AGRIF library (developed at Inria)
- 1-way (coarse grid force the finer grid) and 2way (feedback of the finer grid to the coarse grid) nesting capabilities

Towards multi-grid / multi-resolution (in dev.)

- Exchanges between grids of the same level
- Refinement criteria
- Good CPU load balance
- Management of numerous grid outputs

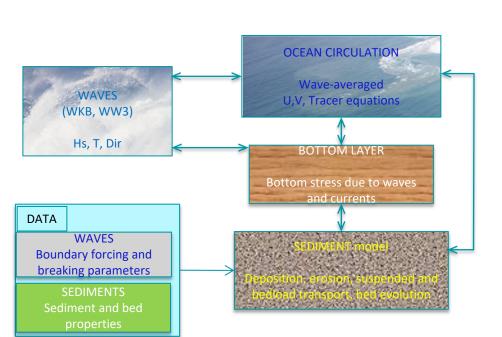


CROCO modules and coupling

Wave-current interactions

- Based on the vortex force formalism (Uchiyama et al. 2010):
 - Impact of evolving water level on waves
 - Impact of current on waves evolution (refraction, etc)
 - Wave-induced circulation (stokes drift and transport, acceleration by breaking)
 - Enhanced mixing due to wave breaking
 - Surface and bottom streaming (wave-induced thin viscous boundary layer)
 - Mass flux due to wave rollers
 - Wave-induced pressure effects
 - Wave-induced additional diffusivity
 - Wave-induced setup
- WKB module
- Coupling with a wave model through OASIS3-MCT library (developed at CERFACS)

CROCO modules and coupling

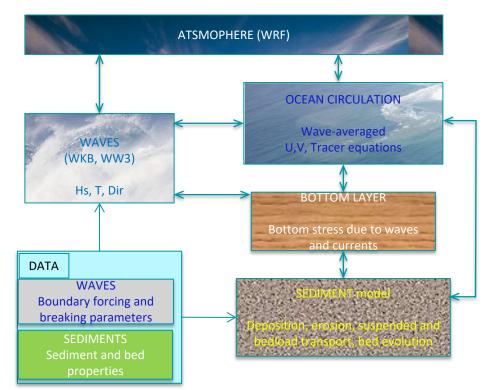

Sediment modules

- USGS Sediment model (Blaas et al. (2007); Warner et al. (2008))
 - Wave input (specified, WKB, or WW3)
 - Wave-current combined bottom stress (Soulsby, 1995)
 - Erosion (armoring), deposition, suspended transport
 - Bedload transport and flux divergence
 - Bed model (sand, mud, or mixed)
 - Morphological evolution (with acceleration factor)
 - Wetting and drying
 - Positive-definite advection schemes (WENO,TVD)
 - Sediment influence on density
- MUSTANG (Mud and Sand Transport Modeling, Le Hir et al., 2011, in dev. by Ifremer/DHYSED)

Morphodynamics

Currents-sediment coupling (Warner et al. 2008):

- Volume and constancy preserving scheme
- Speed-up equilibration: morpho. factor (Roelvink, 2006)



CROCO modules and coupling

Ocean-wave-atmosphere coupling

- Current feedback (CFB) option available
- Coupling with an atmospheric model through OASIS3-MCT library (developed at CERFACS)

⇒ Need to download and compile OASIS and coupled models

Biogeochemistry

- PISCES module (Aumont and Bopp, 2006)
- BioEBUS module (Gutknecht et al., 2013)
- NPZD

Coupling with lagrangian and ecosystemic models

- ARIANE
- ICHTYOP
- OSMOSE
- APECOSM

CROCO tools and facilities

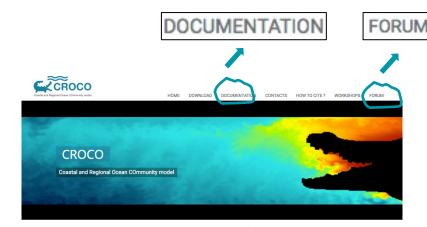
Matlab CROCO_TOOLS

- Climatological pre-processing
- Interannual pre-processing
- Visualization

Python CROCO_TOOLS (in dev)

- Pre-processing
- Visualization

XIOS (dev. at ISPL)


- Outputs facilities
- Diagnostics facilities
- \Rightarrow Need to download and compile XIOS

Online diagnostics

• Online temperature / vorticity / energy balance

CROCO help

CROCO, Coastal and Regional Ocean COmmunity model

CROCO is a new oceanic modeling system built upon ROMS_AGRIF and the nonhydrostatic kernel of SNH (under testing), gradually including algorithms from MARS30 (sediments) and HYCOM (vertical coordinates). An important objective for CROCO is to resolve very fine scales (especially in the costal area), and their interactions with larger scales. It is the oceanic component of a complex coupled system including various components, e.g., atmosphere, surface waves, marine sediments, biogechemistry and eccosystems.

CROC0 Version 1.0 official releases in now available in the Download section, it includes new capabilities as non-hydrostatic kernel, ocean-wave-atmosphere couling, sediment transport, new high-order numerical schemes for advection and mixing, and a dedicated //0 server (XIOS). A new version of CROC0_TOOLS accompany this release. CROCO will keep evolving and integrating new capabilities in the following vers.

CROCO project: version 1.0

Releases

Official release CROCO v1.0 now available

New release of <u>croco_tools</u> with new tools in python (croco_pytools) and new tools for coupling (Coupling_tools)

Mailing list & Forum

We strongly encourage all users to join our mailing list (low traffic; announcements, updates, bug fixes):

croco-users@lists.gforge.inria.fr

To subscribe, simply send an email to croco-users-join@lists.gforge.inria.fr

To unsubscribe, simply send an email to croco-users-leave@lists.gforge.inria.fr

ALL UNANSWERED Search or ask your question	n		0	ASK YOUR QUESTION
6 questions Sort by » date activ	rity ▼ answer	s votes	RSS 🔊	
source_ncfile		-	20	Tag search
CROCO-tools	no votes	answers	28 views	
		Oct 7 '19 ar	ngelolemos	search
ın croco.csh	00	00	2	Tags
- CROCO-model compilation-installation	NO votes	no answers	views	CROCO-model ×26
		Oct 4 '19	Apriansyah	CROCO-tools ×10
ffline nesting	no	no	678	compilation-installation ×6
CROCO-model dynamics-numerics nesting	votes	no answers	views	biogeochemistry ×5
		Sep 30	0 '19 camila	dynamics-numerics ×5
oco blows up when defining PISCES and BULK forcing	no	no	145	nesting ×4
CROCO-model biogeochemistry	votes	answers	views	physics-params ×4
	Sep 18 '19 rreboreda			download ×2 forcing ×2
ata ECCO 2019	00	200	606	grid ×2 parallelization ×2
CROCO-model CROCO-tools ini-boundaries	no votes	no answers	views	sediment-waves ×2
	Sep 16 '19 crisalas			AGRIF ×1
arallel efficiency	10.0		75	ini-boundaries ×1
	no	no	75 views	matlab ×1