
Parallelization and HPC aspects

CROCO – training 2023 - Barcelonette

CROCO – training 2023

1

Domain decomposition

2

Approach 1 : shared memory

Shared memory

• Computing node have access to a shared memory
• Exchange by memory copy

3

Approach 1 : distributed memory

• Computing nodes DO NOT have access to a shared memory
• Exchange by explicit network message
• Practically, MPI manage also shared memory
• Preferred approach in CROCO

memory memory

4

Implementation in CROCO : OpenMP

2 files to edit in CROCO
param.h : specify the x and y decomposition
cppdefs.h : #define OPENMP
 then compilation

Need to specify the number of computing core to
the environment
export OMP_NUM_THREADS = 4

5

Implementation in CROCO : OpenMP

• Each core can read/write global variables.

• Has to ensure that different cores will not
write the same indices of variables.

• Also has to synchronize between different
threads

6

Implementation in CROCO : MPI

2 files to edit in CROCO
• param.h : specify the x and y

decomposition : NP_XI and NP_ETA
• cppdefs.h : #define MPI
 then compilation

Execution :
 mpirun –np 4 ./croco croco.in (or mpiexec,
srun, … depending on the MPI scheduler)

7

Implementation in CROCO : MPI

• Each core has access to the variables only over the tile

• Cores have to communicate with each other to exchange information about boundaries

8

Take home message

• No hybrid (OpenMP/MPI) version

• GPU version in développement

• 2 paradigm available : MPI and OpenMP

• Need to recompile the code

• MPI is prefered because much more used

• Think about Favour the domain decomposition in the ETA (Y) direction for performances

9

Land sub-domains suppression

To suppress computing node and speed up the computation

10

Land sub-domains suppression

Need preprocessing + Compilation with MPI_NOLAND

1. Preprocessing in croco/MPI_NOLAND :
- compile the preprocessing : edit makefile +
make
- edit namelist with the name of your grid

file and the max CPU you can use
- Run the code : ./mpp_optimize
- Visualize : ./mpp_plot.py croco_grd.nc

benguela-008x005_033

2. Compilation part
- add key MPI_NOLAND
- edit param.h : values for NP_XI, NP_ETA and

NNODE from preprocessing
(NNODE <= NP_XI x NP_ETA)
- run as usual
WARNING : grid file as to be called
croco_grd.nc (or to be changed in MPI_Setup.F)

11

Outputs with MPI (cpp key MPI)

4 choices :

- do nothing

- use parallel files option : key PARALLEL_FILES

- use NETCDF4 parallel capabilities : key NC4PAR

- use XIOS (next section)

12

Outputs with MPI : nothing specified

mpirun -np 4 ./croco. (NP_ETA=4)

Very unefficient !!
13

Outputs with MPI : KEY PARALLEL_FILES

mpirun -np 4 ./croco. (NP_ETA=4)

Speed-up writing
but end up with split files to recombine (ncjoin)

14

Outputs with MPI : key NC4PAR

mpirun -np 4 ./croco. (NP_ETA=4)

Speed-up with only one file at the end
Need NetCDF4 build with parallel capabilities

15

XIOS

Exemple
(S. Masson, from NEMO …)

Strategy for outputs
XIOS : external server developed at IPSL
http://forge.ipsl.jussieu.fr/ioserver

16

http://forge.ipsl.jussieu.fr/ioserver

XIOS

• Originally, a library dedicated to Input/Output management of large climate coupled models
(e.g. CMIP simulations for IPCC with NEMO and other code)

• Written and managed at (LSCE-IPSL) by Y. Meurdesoif et al.

• XIOS creates output NetCDF files

• Implemented in other codes (ROMS, MARS3D, CROCO) by non-xios-expert developers
despite of a light existing documentation.

• All documentation at http://forge.ipsl.jussieu.fr/ioserver with tutorials, user guide

• Installation of XIOS could be not an easy task to do on a new machine, be sure
it is already well installed with the right netcdf4 library !

• In the next croco version, XIOS version >=2

17

XIOS: attached mode

Using xios in attached mode : each croco executable compute and write (like a classical library)

18

XIOS: Why and when

• I/O becomes a bottleneck in parallel computing with using a large
amount of processors

e.g. Atlantic model at 1km resolution : 10000 x 14000 x 200 grid points ;
using up to ~50000 procs
=> Very difficult or impossible to manage such amount of output datas with
classical netcdf library.

• Only an external configuration file is needed to configure the outputs (no
need to compile each time)

 - create new files
- create new variables from referenced variables
- use time filter (instantaneous, average, cumulate, ...)

• Efficiency in production of data on supercomputer parallel file system

• Flexibility and “simplicity” in management of I/O and data definition

Remark : It is may be not so “ simple ” for beginners because you need to understand how to modify the
configuration file written in xml 19

XIOS: detached mode (server mode)

each croco executable compute and send field to the server

20

XIOS: in practice

In cppdefs.h add ccp keys : #define XIOS
- Add the XIOS library path in jobcomp
- Compile once : ./jobcomp

Edit/modify xios configuration file : iodef.xml

To run :
- in attached mode : as usual
- in detached mode : like a coupled model … (mpirun -np 10 ./croco : -np 2 ./xios.exe)

21

