CROCO – Training Barcelonette 2023

Coupling CROCO with other models using OASIS

CROCO - training 2023 - Barcelonette

Introduction: coupling philosophy

Coupling with OASIS

OASIS-MCT (Ocean-Atmosphere-Sea-Ice-Soil, Model Coupling Toolkit) is a coupler developed at CERFACS, Toulouse, France.

It is a **set of libraries** (not an executable file) providing functions which are called in the models themselves:

- Exchange of variables and time interpolations (PSMILE library)
- Parallel exchanges (MCT library)
- Grid interpolations (SCRIPR library)

It has the **advantage** of being:

- non-intrusive, easy implementation: only a few calls in the model time stepping, and a few additional routines
- A common interface for a variety of models (e.g. CROCO, NEMO, SURFEX, WAVEWATCHIII...)

Coupling with OASIS

Coupling strategy:

- a few additional routines in each model to specify exchanges
- a few calls in the main model routines (initialization, time stepping, finalization)

On the user side:

- **compilation** with options for coupling in each code and link to the OASIS library
- coupling settings (variables to exchange, coupling frequency, grids...) are controlled thanks to an external file: namcouple
- additional restart files are created for the coupler
- models are launched together at the same time
- a few additional log files to check

OASIS

Implementation in models

OASIS-MCT implementation calls:

Initialization

oasis_init_comp(...) oasis_get_localcomm(..)

Definitions

oasis_write_grid(...)
oasis_def_partitions(...)
oasis_def_var(...)

Exchange fields(within time stepping) oasis_put(...) oasis_get(...)

Finalization oasis_terminate(...)

Implementation in CROCO

Coupling sequence

Coupling sequence

The **namcouple** is the text file through which you will specify which fields will be coupled, and how...

A first section gathers the general settings:

NFIELDS: total number of fields being exchanged \$NFIELDS 23
######################################
\$NBMODEL 3 wrfexe wwatch crocox
######################################
\$KONTIME 86400 ###################################
NLOGPRT: debug and time statistics informations printed in log file \$NLOGPRT
11

The **namcouple** is the text file through which you will specify which fields will be coupled, and how...

A second section provides the information on exchanged fields. A typical sub-section for one exchanged field looks like:

CROCO_SSH WW3SSH 1 360 1 oce.nc EXPORTED
318 248 318 248 ocnt ww3t LAG=180
RORO
SCRIPR
DISTWGT LR SCALAR LATLON 1 4

Line 1: OASIS name for field in sending model OASIS name for field in sending model in target model Unused digit Coupling period #of transformations (here 1 interpolation) Restart file name Keyword: EXPORTED = field written only at the end of the simulation EXPOUT = field written at every coupling time step in restart file

- Line 2: # of points of the sending and target grids, names of the sending and target grids, LAG=dt of sending model
- Line 3: type of grid (Periodical or Regional) and # of overlapping points for sending and target models
- Line 4: keywords for transformations to perform
- Line 5: Parameters for each transformation

Time and grid transformations

The OASIS3-MCT coupler can process:

time transformations (LOCTRANS):

=> See OASIS manual for more detailed information

INSTANT no time transformation, the instantaneous field is transferred ACCUMUL the accumulated field over the coupling period is exchanged AVERAGE the averaged field over the coupling period is transferred T_MIN the minimum value of the field for each source grid point over the coupling period is transferred T_MAX the maximum value of the field for each source grid point over the coupling period is transferred

2D spatial interpolations (SCRIPR):

BILINEAR interpolation based on a local bilinear approximation BICUBIC interpolation based on a local bicubic approximation CONSERV 1st or 2nd order conservative remapping DISTWGT distance weighted nearest-neighbour interpolation (N neighbours) GAUSWGT N nearest-neighbour interpolation weighted by their distance and a Gaussian function

Coupling sequence

13

OASIS-MCT additional files

- Input files:
 - **Restart files**: they have to be build for initialization, and they will be automatically written at the end of the simulation for the next one: oce.nc, atm.nc, wav.nc
 - Namelist file: namcouple
- **Grid generated files**: these files are requested for interpolations, they are automatically built at the beginning of the simulation by all models: grids.nc, masks.nc, areas.nc
- Grid interpolation generated files: these files are built automatically by OASIS according to the previously cited grid files, and to SCRIPR settings in the namcouple: rmp_ww3t_to_ocnt_DISTWGT.nc, rmp_ocnt_to_ww3t_DISTWGT.nc ...
- Log files: several log files are produced by OASIS, they should be checked at the end of the simulation or if something goes wrong during the simulation: nout.000000 : OASIS log file crocox.timers_0000, wwatch.timers_0000 : OASIS log file for time statistics debug.root.01, debug.root.02 : log files for the master processor for each model debug.notroot.01 : log files for other processors for each model

In practice

In practice: summary of steps

(1) Get the source codes

(2) Set-up your configuration architecture and environment

(3) **Compile** first OASIS and then your codes (CROCO, WRF...) with the same netcdf libraries and compilers

(4) Perform **pre-processing** for your different models

(5) Define the **namelists** and **input files** for OASIS and the different models

(6) **Run** the simulation : all models are simultaneously launched

(7) Outputs: check log and ouptut files

We can alternatively **use the coupling toolbox** to perform steps 5-6 more easily (and CROCO compilation)

Tools: the coupling toolbox

Coupling toolbox philosophy and workflow:

The user edit:

* myenv_mypath.sh : environment settings, and paths
* mynamelist.sh : settings for the experiment (which
models, time stepping, input files...)

* **myjob.sh** : settings for the job (dates notably)

Then the user launch the job with ./submitjob.sh

The coupling toolbox manages:

- CROCO compilation if requested
- getting models input files
- preparing OASIS restart files
- editing namelists (for models and OASIS)
- launching the run
- putting output files
- eventually looping for another job

Tools: the coupling toolbox

Coupling toolbox: configuration architecture

* More details: https://croco-ocean.gitlabpages.inria.fr/croco_doc/tutos/tutos.16.coupling.tools.html

Tutorial: let's go

- Coupling CROCO with a toy model :
 - => simple: a toy model is a little model that mimics another (atmospheric or wave) model what it does: it read a model output file (here from WRF or WW3) and exchange variables with CROCO through OASIS (send / receive coupled fields)
 - First, you will do all the steps "by hand"
 - Then you will use the coupling toolbox
- Then you will launch a truly coupled run with WRF or WW3

Tutorials available here :

https://croco-ocean.gitlabpages.inria.fr/croco_doc/tutos/tutos.16.coupling.html

Reminder: summary of steps

(1) Get the source codes

(2) Set-up your configuration architecture and environment

(3) **Compile** first OASIS and then your codes (CROCO, WRF...) with the same netcdf libraries and compilers

(4) Perform **pre-processing** for your different models

(5) Define the **namelists** and **input files** for OASIS and the different models

(6) **Run** the simulation : all models are simultaneously launched

(7) Outputs: check log and outptut files

We can alternatively **use the coupling toolbox** to perform steps 5-6 more easily (and CROCO compilation)

Coupling with a toy "by hand"

(1) Get the source codes

(0) Login and environment file

ssh -X userXX@172.20.254.3

cp /home/COMMONDATA/bashrc.netcdf.gcc11 . source bashrc.netcdf.gcc11

(1) Get the source codes

=> already done by us, and copied to your home at the beginning Refer to the 'Download' tutorial on CROCO doc to do it by yourself on your machine

cp -r /home/COMMONDATA/codes/CROCO . cp -r /home/COMMONDATA/codes/WRF . cp -r /home/COMMONDATA/codes/OASIS . mkdir DATA In -s /home/COMMONDATA/data_tutos/* DATA/. mkdir CONFIGS

Architecture reminder

Suggested work architecture:

\$HOME/CROCO - croco - croco_tools \$HOME/OASIS - oasis3-mct

\$HOME/WRF

- WRF - WPS

\$HOME/DATA

- CROCO_DATASETS - SODA_BENGUELA_LR - CFSR_GRIB2

- PREPARED_FILES_BENGUELA

\$HOME/CONFIGS

- BENGUELA_LR - BENGUELA_CPL Source codes

Datasets from global reanalyses

Your model configurations

•/ .../ .bash_history .bashrc bashrc.netcdf.gcc11 .cache/ .config/ CONFIGS/ create_config.bash* CROCO/ DATA/ OASIS/ .profile .ssh/ .viminfo WRF/

(2) Set-up your configuration architecture and environment

\$HOME

cp CROCO/croco/create_config.bash .

Edit create_config.bash (e.g. with vi) => you need to set-up the paths !

3 options of configuration architectures available:

- "all-dev": for dev of analytical tests
- "all-prod": for production climatological / interannual simulations => provides additional scripts
- "all-prod-cpl": for coupled simulations (ww3, wrf)=> provides additional scripts

=> choose « all-prod-cpl »

Define the paths for your architecture and your dev or prod choice croco source directory CROCO DIR=\$HOME/CROCO/croco # croco tools directory TOOLS DIR=\$HOME/CROCO/croco_tools # Configuration name MY CONFIG NAME=BENGUELA CPL Home and Work configuration directories MY_CONFIG_HOME=\$HOME/CONFIGS MY CONFIG WORK=SHOME/CONFIGS # Options of your configuration ## default option : all-dev for the usual ("all-in") architecture, for #options=(all-dev) ## example for production run architecture #options=(all-prod) ## example for production run architecture and coupling with external options=(all-prod-cpl) ## example for specified options:

#options=(oce-prod prepro inter)

(2) Set-up your configuration architecture and environment

\$HOME

=> Run the create_config script:

./create_config.bash

=> It will create a BENGUELA_CPL configuration in your CONFIGS directory

cd CONFIGS/ ls -l cd BENGUELA_CPL ls -l

create config.bash.bck* CROCO FILES/ CROCO IN/ DATA/ myenv_mypath.sh* myjob.sh* mynamelist.sh* OASIS IN/ PREPRO/ README_coupling_tools SCRIPTS TOOLBOX/ submitjob.sh* TOY_FILES/ TOY_IN/ WRF_FILES/ WRF_IN/ WW3_FILES/ WW3_IN/

(2) Set-up your configuration architecture and environment

\$HOME/CONFIGS/BENGUELA CPL

myenv mypath.sh

create config.bash.bck ------ Backup of create config script ----- Environment file

mynamelist.sh myjob.sh

----- Scripts for setting up the coupled simulation

submitjob.sh SCRIPTS TOOLBOX

PREPRO

CROCO IN **CROCO FILES**

WRF IN WRF FILES

OASIS IN

----- Coupling toolbox ----- Directory for preprocessing (all codes)

----- Script for launching the job

----- Directory for CROCO compilation and settings ----- Directory for CROCO inputs and outputs files

----- Directory for WRF compilation and settings/namelist ----- Directory for WRF inputs and outputs files

----- Directory for OASIS namelists

create_config.bash.bck* CROCO_FILES/ CROCO IN/ DATA/ myenv_mypath.sh* myjob.sh* mynamelist.sh* OASIS IN/ PREPRO/ README_coupling_tools SCRIPTS_TOOLBOX/ submitjob.sh* TOY FILES/ TOY IN/ WRF FILES/ WRF IN/ WW3 FILES/ WW3_IN/

(2) Set-up your configuration architecture and environment

\$HOME/CONFIGS/BENGUELA_CPL

Edit **myenv_mypath.sh** to set all the necessary environment variables, modules, and paths for the machine: check the file and eventually edit paths if necessary:

 you need to add source ~/bashrc.netcdf.gcc11 at the end of the environment settings

 you need to change the oasis directory : export CPL="\${HOME}/OASIS/oasis3-mct/compile_oasis3mct"

Then source it:

source myenv_mypath.sh

export export	NETCDF_CONFIG=\${NETCDF}/bin/nf-config wWATCH3_NETCDF=NC4
#### B source	arcelonette ### ~/bashrc.netcdf.gcc11
####### ####### ########	######################################
# # Mach #	ine settings
export	MACHINE="Linux"
≠ # Conf	ig paths
export export export	CONFIG=BENGUELA_CPL CHOME=/home/swenj/CONFIGS/BENGUELA_CPL CWORK=/home/swenj/CONFIGS/BENGUELA_CPL
# # Tool	s paths
# export	SCRIPTDIR=\$CHOME/SCRIPTS_TOOLBOX
#	l source paths #Insert the full path (do not use "~" for home)

(3) Compile first OASIS and then your codes (CROCO, WRF...)

- First compile OASIS => already done here by us. Library is in \$HOME/OASIS/oasis3-mct/compile_oasis3-mct
- Then, compile your models in coupled mode (with the same netcdf libraries and compilers)

cd \$HOME/CONFIGS/BENGUELA_CPL/CROCO_IN

in cppdefs.h, define: OA_COUPLING or/and OW_COUPLING, and MRL_WCI MPI (mandatory)

in jobcomp: edit OASIS library path: PRISM_ROOT_DIR=\$CPL

=> Compile

* For **CROCO**:

./jobcomp

(3) Compile first OASIS and then your codes (CROCO, WRF...)

- First compile OASIS => already done here by us. Library is in \$HOME/OASIS/oasis3-mct/compile_oasis3-mct
- Then, compile your models in coupled mode (with the same netcdf libraries and compilers)

* For the **TOY** model : => already done by us

You need to copy the relevant executable (and Makefile in case you want to compile by yourself)

cd TOY_IN cp /home/COMMONDATA/codes/TOY/* .

(If you want to compile: check Makefile which is already set-up for the current config., compile : make)

(4) Perform pre-processing for your different models

* For **CROCO**: => already done in your BENGUELA_LR configuration or done by us also You just need to link the inputs files to your directory:

cd $\$ CONFIGS/BENGUELA_CPL/CROCO_FILES In -s $\$ CONFIGS/CROCO_FILES/* .

* For **the TOY model**: => output files from WRF and WW3 available Link the inputs files to your directory:

> cd \$HOME/CONFIGS/BENGUELA_CPL/TOY_FILES In -s \$HOME/DATA/TOY_FILES/* .

Then create the toy input files from WRF output:

or WW3 output:

\$SCRIPTDIR/OASIS_SCRIPTS/create_oasis_toy_files.sh wrfout_d01_20050101_20050201_fortoya.nc toy_atm.nc wrf '2,249' \$SCRIPTDIR/OASIS_SCRIPTS/create_oasis_toy_files.sh
ww3_20050101_20050131.nc toy_wav.nc ww3 '1,124'

\$HOME/CONFIGS/BENGUELA_CPL

First create a directory to run the model by hand, and copy the necessary files:

- namelists : namcouple, TOYNAMELIST.nam, croco.in
- executables : crocox, toyexe
- input files : toy_atm.nc, grid_atm.nc or toy_wav.nc, grid_wav.nc

mkdir run_byhand cd run_byhand

cp ../TOY_IN/namcouple_example_oa namcouple

cp ../TOY_IN/TOYNAMELIST.nam_example_oa TOYNAMELIST.nam

cp ../TOY_IN/toy_model toyexe

cp ../TOY_FILES/toy_atm.nc .

cp ../TOY_FILES/grid_atm.nc .

cp ../CROCO_IN/croco crocox cp \$HOME/CROCO/croco/OCEAN/croco.in .

Set up the **namcouple**:

This is a typical input file for OASIS3-MCT. # Keywords used in previous versions of OASIS3 *~~~~~~ # but now obsolete are marked "Not used" # SST (K) # Don't hesitate to ask precisions or make suggestions (oasishelp@cerfacs.fr). CROCO SST TOY SST 1 10800 2 oce.nc EXPORTED # Any line beginning with # is ignored. Blank lines are not allowed. 41 42 56 50 ocnt toyt LAG=3600 R Ø R Ø 9 fields exchanged : LOCTRANS SCRIPR #NFIELDS: total number of fields being exchanged 3 from Ocean => Atmosphere AVERAGE \$NFIELDS DISTWGT LR SCALAR LATLON 1 4 6 from Atmosphere => Ocean # NBMODEL: number of models and their names (6 characters) \$NBMODEL Name of the model [for oasis] 2 toyexe crocox # RUNTIME: total simulated time for the actual run in seconds (<18) \$RUNTIME 259200 ... Run duration 3 days [in second]

for each variable:

Set up the **croco.in**:

Change NTIMES Change the paths to the input files And to the output files Change the NAVG and NWRT itle: BENGUELA TEST MODEL time stepping: NTIMES dt[sec] NDTFAST NINFO 72 3600 60 time_stepping_nbg: NDTNBQ CSOUND_NBQ VISC2 NB0 0.01 1000 S-coord: THETA S. THETA B. Hc (m) 7.0d0 2.0d0 200.0d0 start date: 2000-01-01 00:00:00 end date: 2000-02-01 00:00:00 xios origin date: 2014-01-04 00:00:00 output_time_steps: DT_HIS(H), DT_AVG(H), DT_RST(H) 6 12 grid: filename ../CROCO FILES/croco grd.nc forcing: filename ../CROCO FILES/croco frc.nc bulk forcing: filename ../CROCO_FILES/croco_blk.nc climatology: filename ../CROCO FILES/croco clm.nc boundary: filename ../CROCO FILES/croco bry.nc initial: NRREC / filename ../CROCO_FILES/croco_ini.nc restart: NRST, NRPFRST / filename 720 ./croco_rst.nc history: LDEFHIS, NWRT, NRPFHIS / filename 24 0 ./croco_his.nc averages: NTSAVG, NAVG, NRPFAVG / filename 24 1 0 ./croco_avg.nc

Set up the TOYNAMELIST.nam:

Create restart files for OASIS: see create_oasis_restart_from_calm_conditions.sh

For the atmospheric variables:

\$SCRIPTDIR/OASIS_SCRIPTS/create_oasis_restart_from_calm_conditions.sh ../TOY_FILES/wrfout_d01_20050101_20050201_fortoya.nc atm.nc wrf "TOY_V_01 TOY_U_01 TOY_TAUX TOY_TAUY TOY_TAUM TOYSRFLX TOYSTFLX TOY_EMP TOY_PSFC"

For the wave variables :

\$SCRIPTDIR/OASIS_SCRIPTS/create_oasis_restart_from_calm_conditions.sh ../TOY_FILES/ww3_20050101_20050131.nc wav.nc ww3 "TOY_TOM1 TOY___HS TOY__DIR TOY_TWOX TOY_TWOY TOY_TAWX TOY_TAWY TOY__CHA"

For the oceanic variables:

\$SCRIPTDIR/OASIS_SCRIPTS/create_oasis_restart_from_calm_conditions.sh ../CROCO_FILES/croco_grd.nc oce.nc croco "CROCO_SST CROCO_SSH CROCO_NOCE CROCO_EOCE"

(6) Run the simulation

mpirun -n 1 toyexe : -n 2 crocox

(7) Outputs: check log and outptut files

Outputs are:

croco_his.nc croco_avg.nc

Log files are:

nout.000000 crocox.timers_0000 toyexe.timers_0000 debug.01.000000 debug.02.000001 debug.02.000000

OUTPUT_TOY.txt croco.log

OASIS log files

Model log files

Coupling with an atmospheric or wave model using the coupling toolbox

First copy input files for the models : we have already perform pre-processing for you.

* For **WRF**: => already done by us You just need to link the inputs files to your directory:

> cd \$CWORK/WRF_FILES In -s \$HOME/DATA/WRF_FILES/* .

* For **CROCO**: => already done in your BENGUELA_LR configuration or done by us also You just need to link the inputs files to your directory:

> cd \$CWORK/CROCO_FILES In -s \$HOME/DATA/CROCO_FILES/* .

Coupling toolbox philosophy and workflow:

The user edit:

* myenv_mypath.sh : environment settings, and paths
* mynamelist.sh : settings for the experiment (which
models, time stepping, input files...)

* **myjob.sh** : settings for the job (dates notably)

Then the user launch the job with ./submitjob.sh

. . .

The coupling toolbox manages:

- CROCO compilation if requested
- getting models input files
- preparing OASIS restart files
- editing namelists (for models and OASIS)
- launching the run
- putting output files
- eventually looping for another job

\$HOME/CONFIGS/BENGUELA_CPL

Only 3 files need to be modified:

myenv_mypath.shenvironment settings, and pathsmynamelist.shsettings for the experiment (which models, time stepping, input files...)myjob.shsettings for the job (dates, mpi settings...)

\$HOME/CONFIGS/BENGUELA_CPL

Edit **myenv_mypath.sh** to set all the necessary environment variables, modules, and paths for the machine: check the file and eventually edit paths if necessary:

- you need to add source ~/bashrc.netcdf.gcc11 at the end of the environment settings
- you need to change the oasis directory : export CPL="\${HOME}/OASIS/oasis3-mct/compile_oasis3mct"

Then source it:

source myenv_mypath.sh

chipor c	NETCDF_CONFIG=\${NETCDF}/bin/nf-config
export	WWATCH3_NETCDF=NC4
#### B	arcelonette ###
source	~/bashrc.netcdf.gcc11
####### ####### ########	######################################
# # Mach #	ine settings
# export #	MACHINE="Linux"
, # Conf #	ig paths
export	CONFIG=BENGUELA_CPL
export	CHOME=/home/swenj/CONFIGS/BENGUELA_CPL CWORK=/home/swenj/CONFIGS/BENGUELA_CPL
"	
# # Tool #	s paths
# export	SCRIPTDIR=\$CHOME/SCRIPTS_TOOLBOX
# # Mode #	l source paths #Insert the full path (do not use "~" for home)
+	

port XIOS="\${HOME}/XIOS"

\$HOME/CONFIGS/BENGUELA_CPL

Edit mynamelist.sh

Set up for OA coupled run RUNtype=oa USE_ATM=1 USE_OCE=1 others=0

Choose online compilation of CROCO

ONLINE_COMP=1

export USE_WAV=0 export USE_TOYATM=0 export USE_TOYOCE=0 export USE_TOYWAV=0

0CE

namelist [Info: grid size is directly

Online Compilation

Creates croco executable depending on # In cppdefs.h options that can be IOS/AGRIF/AGRIF_2WAY

In param.h it modifies the grid s
export ONLINE_COMP=1

\$HOME/CONFIGS/BENGUELA_CPL

Edit myjob.sh

Choose the period of the run: => just a few days JOB_DUR_MTH=0 JOB_DUR_DAY=5

Choose the MPI decomposition: => 1 CPU for CROCO, 4 for WRF NP_OCEX=1 NP_OCEY=1 NP_ATM=2

\$HOME/CONFIGS/BENGUELA_CPL

Launch the script to submit the job and run the simulation:

./submitjob.sh >& job.log

\$HOME/CONFIGS/BENGUELA_CPL

Check log and output files:

job.log ------ your direct log file

jobs_BENGUELA_CPL_exp1 ------ where you can find the job that was launched, the setting files used, and various log files rundir
jobs_BENGUELA_CPL_exp1
myjob.sh
job.log

../
croco.log
crocox.timers_0000
job_BENGUELA_CPL_exp1_20050101_20050110.sh*
myjob.sh*
mynamelist.sh*
namelist.input*
nout.000000
out_run.txt
rsl.error.0000
rsl.out.0000

rundir

------ where the run has been run and where outputs are stored Log files are in execute BENGUELA_CPL_exp1_execute/ BENGUELA_CPL_exp1_outputs/ BENGUELA_CPL_exp1_restarts/

myjob.sh

----- Scripts for setting up the next coupled simulation

Output and log files

In case of error, you should check:

- The job output file: in \$CHOME/jobs_YOUREXPER : YOUREXPER_YYYYMMDD_YYYYMMDD.o*
- The models' log files: either in \$CHOME/jobs_YOUREXPER/YYYYMMDD_YYYYMMDD or in \$CWORK/rundir/YOUREXPER_execute/YYYYMMDD_YYYYMMDD

croco.log rsl.error.0000 log.ww3

OASIS log files:

nout.000000 debug.0?.000000

Typical issues are:

- Files not found: check your file names, and location
- Unconsitent dimensions of the grids in the different files: check models grid files, OASIS grids and masks files, OASIS remapping weight files, namelists of models and OASIS (namcouple)
- Unconsistency in exchanged variables: check namcouple
- Model blow up: check the log files, if blow up is due to CFL (unrealistic speed, or segmentation fault) decrease the model time step

NB! Usually OASIS errors are in debug.root.0X, and model erros are either in their log, or in the standard output (may be in the batch log if no redirection)

NB! If grids.nc or rmp*.nc files exist they will not be re-generated (useful for restart run, but can be source of error...)

Output and log files

Batch log file: YOUREXPER_YYYYMMDD_YYYYMMDD.o*

OASIS

Generated grid files: grids.nc masks.nc **NB!** If grids.nc or rmp*.nc files exist they will not be re-generated (useful for restart run, but can be source of error...)

areas.nc Generated grid interpolation files: rmp_ww3t_to_ocnt_DISTWGT.nc

rmp_ocnt_to_ww3t_DISTWGT.nc ... Generated restart files:

rst_oce.nc, rst_atm.nc, rst_wav.nc (overwritten at the end of each simulation) Logs:

nout.000000

crocox.timers_0000, wwatch.timers_0000 debug.root.01, debug.root.02, ... debug.notroot.01, debug.notroot.02, ...

CROCO

Output files: croco_his.nc croco_avg.nc croco_rst.nc Logs: croco.log + eventually standard output redirected to batch log file if LOGFILE cppkey not defined

WW3

Output files: out_grd.ww3 => ww3.DATE.nc out_pnt.ww3 => ww3.DATE_spec.nc Logs: log.ww3 output.ww3

WRF

Output files: wrfout_d01_DATE wrfxtrm_d01_DATE wrfrst_d01_DATE Logs: rsl.error.0000 rsl.out.0000

Appendices

Coupling with nests

- nesting and cplmask
- Possible to couple multiple domains \rightarrow use of a « coupling mask »
 - + with WRF moving nest : coupling on the parent domain (with interpolation from moving nest(s))

Coupling with OASIS: in WRF

Coupling with OASIS: in WW3

