CROCO – training 2023

Agrif Nesting	AGRIF	Activate nesting capabilities (1-WAY by default)				
	AGRIF_2WAY	Activate 2-WAY nesting (update parent solution by child solution)				

- → AGRIF package
 - --- Adaptive Mesh Refinement
 - → Manage arbitrary number of fixed grid and embedding level

Temporal coupling between a parent and a child grid for a refinement factor of 3 :

Needs to run an embedded model : Surface forcing and initial conditions datas files.

AGRIF provides :

- generic interpolation libraries
- a code transformation and automatic rewriting

Nest Gui

Activation and use :

- define your zooms(s) in Agrif_FixedGrids
- 2. Create your input files for all grids
- 3. To compile : just define #defione AGRIF in cppdefs.h and run ./jobcomp as usual
- 4. To run :launch croco as you are uded to

- To run a simulation with nesting, define the CPP keys (AGRIF + AGRIF2W) and compile (./jobcomp)
- Position of the different grid in AGRIF_FixedGrids.in file

1 23 37 12 29 3 3 3 3 0 # number of children per parent # imin imax jmin jmax spacerefx spacerefy timerefx timerefy # [all coordinates are relative to each parent grid!]

- Namelist relative to the different nest level#1 croco.in.1, #2 (croco.in.2) etc ...
- Visualization (in Matlab) :
 >matlab
 >croco gui

The file Agrif FixedGrids.in define the position of the nested grid

1 37 12 29 3 3 3 3 23 0

2 grids : #0 and #1 #1 is embedded in #0

number of children per parent

imin imax jmin jmax spacerefx spacerefy timerefx timerefy

[all coordinates are relative to each parent grid!]

1							
23	37	12	29	3	3	3	3
1							
12	28	15	33	3	3	3	3
0							

3 grids : #0,#1 and #2 #1 embedded in #0 ; #2 is embedded in the #1

number of children per parent

imin imax jmin jmax spacerefx spacerefy timerefx timerefy

[all coordinates are relative to each parent grid!]

Need to run an embedded model:

For grid #xx :

- croco_grd.nc.xx
- croco frc.nc.xx
- croco blk.nc.xx croco.in.xx croco.ini.nc.xx 5

Offline Nesting

- "Offline" nesting Roms2Roms (Evan et al, 2010, Ocean Modeling):
 - Fortran scripts to prepare boundary conditions are available
- Processing of croco OBC using the output of a larger croco simulation.
- Enable offline oceanic downscalling

Offline Nesting

A portion of the Atlantic domain showing mean SST and several (1-way) nested grids: Forced by repeating "typical" year with QuikSCAT and SODA at open boundaries.