
Croco Documentation
Release 2.0.0

S. Jullien, M. Caillaud, R. Benshila, L. Bordois ,

G. Cambon, F. Dufois, F. Dumas, J. Gula ,

M. Le Corre, S. Le Gac, S. Le Gentil ,

F. Lemarié, P. Marchesiello, G. Morvan ,

J. Pianezze, L. Renault, M. Schreiber and S. Theetten

Apr 22, 2024

CONTENTS

1 Model Documentation 3
1.1 Governing Equations . 3

1.1.1 Primitive Equations . 4
1.1.2 Quasi-Hydrostatic Equations . 6
1.1.3 Wave-averaged Equations . 7
1.1.4 Non-Hydrostatic, Non-Boussinesq Equations . 11

1.2 Model variables . 12
1.2.1 Domain variables (grid.h) . 12
1.2.2 Barotropic variables (ocean2d.h) . 13
1.2.3 Tri-dimensionnal variables (ocean3d.h) . 13
1.2.4 Surface forcing (forces.h) . 14

1.3 Grid and Coordinates . 15
1.3.1 Vertical Grid parameters . 16
1.3.2 Grid staggering . 18
1.3.3 Wetting-Drying . 19

1.4 Numerics . 19
1.4.1 Overview . 19
1.4.2 Time Stepping . 20
1.4.3 Advection Schemes . 24
1.4.4 Pressure gradient . 30
1.4.5 Equation of State . 30
1.4.6 Wetting and Drying . 31
1.4.7 Non-Boussinesq Solver . 31

1.5 Parametrizations . 31
1.5.1 Vertical mixing parametrizations . 31
1.5.2 Horizontal diffusion . 38
1.5.3 Bottom friction . 39

1.6 Parallelisation . 40
1.6.1 Parallel strategy overview . 40
1.6.2 Variable placement for staggered grids . 43
1.6.3 Loops and indexes for staggered grids . 43
1.6.4 Halo layer exchanges . 45
1.6.5 Dealing with outputs . 45
1.6.6 Run with GPU . 46

1.7 Atmospheric Surface Boundary Layer . 47
1.8 Open boundaries conditions . 50

1.8.1 OBC . 50
1.8.2 Sponge Layer . 51
1.8.3 Nudging layers . 51
1.8.4 Lateral forcing . 51

1.9 Rivers . 53
1.10 Tides . 54
1.11 Nesting Capabilities . 55
1.12 Other modules : sediment models, flow-obstruction models, biology models 56

i

1.12.1 Bottom Boundary Layer model . 56
1.12.2 Sediment models . 59
1.12.3 OBSTRUCTIONS module : flow in presence of various obstructions 108
1.12.4 Biogeochemical models . 120
1.12.5 Lagrangian floats . 121

1.13 Coupling CROCO with other models . 121
1.13.1 OASIS philosophy . 121
1.13.2 Detailed OASIS implementation . 125
1.13.3 Coupled variables . 129
1.13.4 Grids . 137

1.14 I/O and Online Diagnostics . 139
1.15 Review of test cases . 140

1.15.1 Basin . 140
1.15.2 Canyon . 142
1.15.3 Equator . 144
1.15.4 Inner Shelf . 146
1.15.5 River Runoff . 148
1.15.6 Gravitational/Overflow . 149
1.15.7 Seamount . 150
1.15.8 Shelf front . 151
1.15.9 Equatorial Rossby Wave . 152
1.15.10 Thacker . 153
1.15.11 Upwelling . 154
1.15.12 Baroclinic Vortex . 155
1.15.13 Internal Tide . 157
1.15.14 Internal Tide (COMODO) . 159
1.15.15 Baroclinic Jet . 161
1.15.16 Plannar Beach . 164
1.15.17 Rip Current . 166
1.15.18 Sandbar . 169
1.15.19 Swash . 173
1.15.20 Tank . 175
1.15.21 Acoustic wave . 177
1.15.22 Gravitational Adjustment . 178
1.15.23 Internal Soliton . 180
1.15.24 Kelvin-Helmoltz Instability . 182
1.15.25 Horizontal tracer advection . 184
1.15.26 Sediment test cases . 185
1.15.27 Kilpatrick . 205
1.15.28 Seagrass . 207

1.16 Appendices . 210
1.16.1 cppdefs.h . 210
1.16.2 croco.in . 219
1.16.3 Comparison of ROMS and CROCO versions . 225

2 Tutorials 229
2.1 System requirements . 229

2.1.1 Disk space . 229
2.1.2 Compilers and Libraries . 229
2.1.3 Environment variables . 229

2.2 Download . 230
2.2.1 Downloading CROCO . 230
2.2.2 Getting other codes (coupling) . 230

2.3 Contents & Architecture . 232
2.3.1 Architecture . 232
2.3.2 Contents . 232

2.4 Summary of essential steps . 239
2.5 Test Cases . 240

ii

2.5.1 BASIN . 240
2.5.2 Set up you own test case . 243

2.6 Regional: Preparing your configuration . 245
2.7 Regional: Preprocessing (Matlab) . 247

2.7.1 Contents of the croco_tools . 249
2.7.2 Philosophy of the croco_tools . 250
2.7.3 Climatological pre-processing . 250
2.7.4 Interannual pre-processing . 255

2.8 Compiling . 258
2.8.1 cppdefs.h . 258
2.8.2 param.h . 261
2.8.3 jobcomp . 262
2.8.4 Compilation options . 264
2.8.5 Tips in case of errors during compilation . 264

2.9 Running the model . 265
2.9.1 Edit croco.in . 265
2.9.2 Run the model . 268
2.9.3 Tips in case of BLOW UP or ERROR . 269

2.10 Increasing the resolution: BENGUELA_VHR . 269
2.11 Running with interannual forcing . 270

2.11.1 Run after classical interannual pre-processing . 270
2.11.2 Alternative method: online interpolation of atmospheric bulk forcing 273

2.12 Running forecasts . 274
2.12.1 Strategy of Forecast_tools . 274
2.12.2 Set forecast parameters . 274
2.12.3 Compiling . 276
2.12.4 Running the script . 276

2.13 Nesting Tutorial . 278
2.14 Adding Rivers . 280

2.14.1 Constant flow and concentration . 281
2.14.2 Variable flow read in a netCDF file and constant concentration 281
2.14.3 Variable flow and variable concentration from a netCDF file 282
2.14.4 Using a nest . 285

2.15 Adding tides . 285
2.15.1 Pre-processing (Matlab) . 285
2.15.2 Compiling . 286
2.15.3 Running . 287

2.16 Visualization (Matlab) . 287
2.17 Python tools for CROCO . 289
2.18 NBQ Tutorial . 290

2.18.1 Some important points about Large-Eddy Simulations (LES) 290
2.18.2 KH_INST Test Case . 292
2.18.3 Set up your own NBQ configuration . 294
2.18.4 NBQ OPTIONS . 295
2.18.5 Appendix : some words on CROCO-NBQ kernel . 295

2.19 Coupling tutorial . 296
2.19.1 Summary of steps for coupling . 296
2.19.2 Compiling in coupled mode . 297
2.19.3 Simple CROCO-TOY coupled example . 305
2.19.4 Advanced coupling tutorial . 310

2.20 Littoral dynamics tutorial . 344
2.21 Realistic coastal configuration . 347
2.22 XIOS . 347
2.23 Tips . 351

2.23.1 Tips in case of errors during compilation . 351
2.23.2 TIPS for errors at runtime . 351
2.23.3 Analytical forcing . 352

2.24 CROCO/MUSTANG tutorial & tips . 352

iii

2.24.1 Get to know the CROCO/MUSTANG coupling . 352
2.24.2 Run a test case . 353
2.24.3 Create your own configuration . 353

2.25 TRAINING 2019: DATARMOR specific . 357
2.25.1 Getting the good environment . 357
2.25.2 Creating your work architecture . 357
2.25.3 DATA FILES . 358
2.25.4 BASIN configuration for XIOS tutorial . 358
2.25.5 SOURCES for coupling tutorial . 358

2.26 Ifremer specific . 359
2.26.1 Croco training in the framework of datarmor . 359

Bibliography 379

iv

Croco Documentation, Release 2.0.0

CROCO is an oceanic modeling system built upon ROMS_AGRIF and maintained by IRD, INRIA, CNRS, IFRE-
MER and SHOM, French institutes working on environmental sciences and applied mathematics. An important
objective for CROCO is to resolve very fine scales (especially in the coastal area), and their interactions with larger
scales. It includes new capabilities such as a non-hydrostatic solver, ocean-wave-atmosphere coupling, evolving
sediment dynamics and marine biogeochemistry, new high-order numerical schemes for advection and mixing, and
a dedicated I/O server (XIOS). A toolbox for pre- and post-processing, CROCO_TOOLS, accompanies the source
code. CROCO will keep evolving and integrating new capabilities in the following years.

CONTENTS 1

Croco Documentation, Release 2.0.0

2 CONTENTS

CHAPTER

ONE

MODEL DOCUMENTATION

1.1 Governing Equations

Related CPP options:

SOLVE3D Solve 3D primitive equations
UV_COR Activate Coriolis terms
UV_ADV Activate advection terms
NBQ Activate non-boussinesq option
CROCO_QH Activate quasi-hydrostatique option
MRL_WCI Activate wave-current interactions

Preselected options:

define SOLVE3D
define UV_COR
define UV_ADV
undef NBQ
undef CROCO_QH
undef MRL_WCI

Presentation
By default (#undef NBQ), CROCO solves the primitive equations as in ROMS, from which it inherited the robust-
ness and efficiency of its time-splitting implementation [Shchepetkin and McWilliams, 2005, Debreu et al., 2012]
and the NBQ option proposes an extension for nonhydrostatic applications. In CROCO’s time-splitting algorithm,
the ”slow mode” is similar to ROMS internal (baroclinic) mode described in Shchepetkin and McWilliams [2005],
whereas, the ”fast mode” can include, in addition to the external (barotropic) mode, the pseudo-acoustic mode that
allows computation of the nonhydrostatic pressure within a non-Boussinesq approach [Auclair et al., 2018]. In this
case, the slow internal mode is also augmented by a prognostic equation of vertical velocity, replacing the hydro-
static equation. Another option (CROCO_QH) extends the PE equations to form the quasi-hydrostatic equations,
relaxing the hypothesis of weak horizontal Coriolis force [Marshall et al., 1997], thus adding a nonhydrostatic pres-
sure component that is solved diagnostically. Then another option (MRL_WCI) treats the wave-averaged equations
[McWilliams et al., 2004] with wave-current interaction terms that are both conservative and non-conservative
(needing parametrizations).

3

Croco Documentation, Release 2.0.0

1.1.1 Primitive Equations

At resolutions larger than 1 km (more marginally above 100 m), The ocean is a fluid that can be described as a
good approximation by the primitive equations (PE). The PE equations are simplifications from the Navier-Stokes
equations made from scale considerations, along with a nonlinear equation of state, which couples the two active
tracers (temperature and salinity):

• Hydrostatic hypothesis: the vertical momentum equation is reduced to a balance between the vertical pressure
gradient and the buoyancy force (non-hydrostatic processes such as convection must be parametrized)

• Boussinesq hypothesis: density variations are neglected except in their contribution to the buoyancy force

• Incompressibility hypothesis (stemming from the former): the three-dimensional divergence of the velocity
vector is assumed to be zero.

• Spherical earth approximation: the geopotential surfaces are assumed to be spheres so that gravity (local
vertical) is parallel to the earth’s radius

• Thin-shell approximation: the ocean depth is neglected compared to the earth’s radius

• Turbulent closure hypothesis: the turbulent fluxes (which represent the effect of small-scale processes on the
large scale) are expressed in terms of large-scale features

By default (#undef NBQ), CROCO solves the primitive equations. However, it also has the ability to relax the first
3 hypotheses (#define NBQ). When SOLVE3D is not activated, CROCO can be used as a classical shallow water
model.

1.1.1.1 Equations in Cartesian coordinates

• The momentum balance in zonal x and meridional y directions, written in terms of grid-scale (resolved) and
subgrid-scale velocity components:

𝜕𝑢

𝜕𝑡
+ ∇⃗. (⃗v𝑢)− 𝑓𝑣 = −𝜕𝜑

𝜕𝑥
+ ℱ𝑢 +𝒟𝑢

𝜕𝑣

𝜕𝑡
+ ∇⃗. (⃗v𝑣) + 𝑓𝑢 = −𝜕𝜑

𝜕𝑦
+ ℱ𝑣 +𝒟𝑣

𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑠𝑐ℎ𝑒𝑚𝑒𝑠𝑎𝑟𝑒𝑎𝑝𝑝𝑙𝑖𝑒𝑑𝑡𝑜𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑧𝑒𝑑𝑠𝑢𝑏𝑔𝑟𝑖𝑑− 𝑠𝑐𝑎𝑙𝑒𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑓𝑙𝑢𝑥𝑒𝑠.

• The time evolution of a scalar concentration field, 𝐶(𝑥, 𝑦, 𝑧, 𝑡) (e.g., salinity, temperature, or nutrients), is
governed by the advective-diffusive equation :

𝜕𝐶

𝜕𝑡
+ ∇⃗. (⃗v𝐶) = ℱ𝐶 +𝒟𝐶

• The equation of state is given by :

𝜌 = 𝜌(𝑇, 𝑆, 𝑃)

• In the Boussinesq approximation, density variations are neglected in the momentum equations except in their
contribution to the buoyancy force in the vertical momentum equation. Under the hydrostatic approximation,
it is further assumed that the vertical pressure gradient balances the buoyancy force :

𝜕𝜑

𝜕𝑧
= −𝜌𝑔

𝜌0

• The final equation expresses the continuity equation. For an incompressible fluid (Boussinesq approxima-
tion):

∇⃗.⃗v =
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0

The variables used are :

𝒟𝑢,𝒟𝑣,𝒟𝐶 : diffusive terms

ℱ𝑢,ℱ𝑣,ℱ𝐶 : forcing terms

4 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

𝑓(𝑥, 𝑦) : Traditional Coriolis parameter 2Ω𝑠𝑖𝑛𝜑

𝑔 : acceleration of gravity

𝜑(𝑥, 𝑦, 𝑧, 𝑡) : dynamic pressure 𝜑 = 𝑃/𝜌0, with P the total pressure

𝜌0 + 𝜌(𝑥, 𝑦, 𝑧, 𝑡) : total in situ density

𝑢, 𝑣, 𝑤 : the (x,y,z) components of vector velocity v⃗

1.1.1.2 Equations in terrain-following coordinates

We first introduce a generalized stretched vertical coordinate system (𝑠), which sets the variable bottom flat at
𝑧 = −ℎ(𝑥, 𝑦). 𝑠 spans the range from -1 (bottom) to 0 (surface), and the transformation rules are:(︂

𝜕

𝜕𝑥

)︂
𝑧

=

(︂
𝜕

𝜕𝑥

)︂
𝑠

−
(︂

1

𝐻𝑧

)︂(︂
𝜕𝑧

𝜕𝑥

)︂
𝑠

𝜕

𝜕𝑠(︂
𝜕

𝜕𝑦

)︂
𝑧

=

(︂
𝜕

𝜕𝑦

)︂
𝑠

−
(︂

1

𝐻𝑧

)︂(︂
𝜕𝑧

𝜕𝑦

)︂
𝑠

𝜕

𝜕𝑠

𝜕

𝜕𝑧
=

(︂
𝜕𝑠

𝜕𝑧

)︂
𝜕

𝜕𝑠
=

1

𝐻𝑧

𝜕

𝜕𝑠

where 𝐻𝑧 ≡
𝜕𝑧

𝜕𝑠

The vertical velocity in 𝑠 coordinate is:

Ω(𝑥, 𝑦, 𝑠, 𝑡) =
1

𝐻𝑧

[︂
𝑤 − (1 + 𝑠)

𝜕𝜁

𝜕𝑡
− 𝑢𝜕𝑧

𝜕𝑥
− 𝑣 𝜕𝑧

𝜕𝑦

]︂
𝑤 =

𝜕𝑧

𝜕𝑡
+ 𝑢

𝜕𝑧

𝜕𝑥
+ 𝑣

𝜕𝑧

𝜕𝑦
+ Ω𝐻𝑧

Ω = 0 at both surface and bottom.

Next, the requirement for a laterally variable grid resolution can also be met for suitably smooth domains by intro-
ducing an appropriate orthogonal coordinate transformation in the horizontal. Let the new coordinates be 𝜉(𝑥, 𝑦)
and 𝜂(𝑥, 𝑦) where the relationship of horizontal arc length to the differential distance is given by:

(𝑑𝑠)𝜉 =

(︂
1

𝑚

)︂
𝑑𝜉

(𝑑𝑠)𝜂 =

(︂
1

𝑛

)︂
𝑑𝜂

Here 𝑚(𝜉, 𝜂) and 𝑛(𝜉, 𝜂) are the scale factors which relate the differential distances (∆𝜉,∆𝜂) to the actual (phys-

1.1. Governing Equations 5

Croco Documentation, Release 2.0.0

ical) arc lengths.

𝜕

𝜕𝑡

(︂
𝐻𝑧𝑢

𝑚𝑛

)︂
+

𝜕

𝜕𝜉

(︂
𝐻𝑧𝑢

2

𝑛

)︂
+

𝜕

𝜕𝜂

(︂
𝐻𝑧𝑢𝑣

𝑚

)︂
+

𝜕

𝜕𝑠

(︂
𝐻𝑧𝑢Ω

𝑚𝑛

)︂
−
{︂(︂

𝑓

𝑚𝑛

)︂
+ 𝑣

𝜕

𝜕𝜉

(︂
1

𝑛

)︂
− 𝑢 𝜕

𝜕𝜂

(︂
1

𝑚

)︂}︂
𝐻𝑧𝑣 =

−
(︂
𝐻𝑧

𝑛

)︂(︂
𝜕𝜑

𝜕𝜉
+
𝑔𝜌

𝜌𝑜

𝜕𝑧

𝜕𝜉
+ 𝑔

𝜕𝜁

𝜕𝜉

)︂
+
𝐻𝑧

𝑚𝑛
(ℱ𝑢 +𝒟𝑢)

𝜕

𝜕𝑡

(︂
𝐻𝑧𝑣

𝑚𝑛

)︂
+

𝜕

𝜕𝜉

(︂
𝐻𝑧𝑢𝑣

𝑛

)︂
+

𝜕

𝜕𝜂

(︂
𝐻𝑧𝑣

2

𝑚

)︂
+

𝜕

𝜕𝑠

(︂
𝐻𝑧𝑣Ω

𝑚𝑛

)︂
+

{︂(︂
𝑓

𝑚𝑛

)︂
+ 𝑣

𝜕

𝜕𝜉

(︂
1

𝑛

)︂
− 𝑢 𝜕

𝜕𝜂

(︂
1

𝑚

)︂}︂
𝐻𝑧𝑢 =

−
(︂
𝐻𝑧

𝑚

)︂(︂
𝜕𝜑

𝜕𝜂
+
𝑔𝜌

𝜌𝑜

𝜕𝑧

𝜕𝜂
+ 𝑔

𝜕𝜁

𝜕𝜂

)︂
+
𝐻𝑧

𝑚𝑛
(ℱ𝑣 +𝒟𝑣)

𝜕

𝜕𝑡

(︂
𝐻𝑧𝑇

𝑚𝑛

)︂
+

𝜕

𝜕𝜉

(︂
𝐻𝑧𝑢𝑇

𝑛

)︂
+

𝜕

𝜕𝜂

(︂
𝐻𝑧𝑣𝑇

𝑚

)︂
+

𝜕

𝜕𝑠

(︂
𝐻𝑧Ω𝑇

𝑚𝑛

)︂
=
𝐻𝑧

𝑚𝑛
(ℱ𝑇 +𝒟𝑇)

𝜕

𝜕𝑡

(︂
𝐻𝑧𝑆

𝑚𝑛

)︂
+

𝜕

𝜕𝜉

(︂
𝐻𝑧𝑢𝑆

𝑛

)︂
+

𝜕

𝜕𝜂

(︂
𝐻𝑧𝑣𝑆

𝑚

)︂
+

𝜕

𝜕𝑠

(︂
𝐻𝑧Ω𝑆

𝑚𝑛

)︂
=
𝐻𝑧

𝑚𝑛
(ℱ𝑆 +𝒟𝑆)

𝜌 = 𝜌(𝑇, 𝑆, 𝑃)

𝜕𝜑

𝜕𝑠
= −

(︂
𝑔𝐻𝑧𝜌

𝜌𝑜

)︂
𝜕

𝜕𝑡

(︂
𝐻𝑧

𝑚𝑛

)︂
+

𝜕

𝜕𝜉

(︂
𝐻𝑧𝑢

𝑛

)︂
+

𝜕

𝜕𝜂

(︂
𝐻𝑧𝑣

𝑚

)︂
+

𝜕

𝜕𝑠

(︂
𝐻𝑧Ω

𝑚𝑛

)︂
= 0

1.1.2 Quasi-Hydrostatic Equations

In oceanography, traditional approximation (TA) takes the Coriolis force only partially into account by neglecting
the components proportional to the cosine of latitude: 𝑓 = 2Ω𝑐𝑜𝑠𝜑 (see Gerkema et al. [2008], for a review).
The justification for the TA is in the hypothesis that the depth of the oceans is very thin compared to the radius of
the Earth. The vertical motions must then be much weaker than the horizontal ones, rendering the non-tradiional
(NT) Coriolis terms (with 𝑓) insignificant compared to the traditional terms (with f) and rendering the pressure
field nearly hydrostatic. Similarly, strong vertical stratification in density, which suppresses vertical motions, also
diminishes the role of NT terms. However, this argument becomes weak near the equator (𝑓 >> 𝑓), or in motions
with a strong vertical component (e.g., convection).

Note also that the QH momentum equations are shown to be more dynamically consistent than PE hydrostatic
equations and that they correctly imply conservation laws for energy, angular momentum, and potential vorticity

1.1.2.1 Equations in Cartesian coordinate

• The momentum balance in x and y directions is extended to include 𝑓 terms (zonal u component):

𝜕𝑢

𝜕𝑡
+ ∇⃗. (⃗v𝑢)− 𝑓𝑣 + 𝑓𝑤 = −𝜕𝜑

𝜕𝑥
+ ℱ𝑢 +𝒟𝑢

𝜕𝑣

𝜕𝑡
+ ∇⃗. (⃗v𝑣) + 𝑓𝑢 = −𝜕𝜑

𝜕𝑦
+ ℱ𝑣 +𝒟𝑣

• Under the QH approximation, the quasi-hydrostatic balance is used for the vertical momentum equation,
where the zonal flow partially balances the pressure gradient :

𝜕𝜑

𝜕𝑧
= −𝜌𝑔

𝜌0
+ 𝑓𝑢

In practice, the non-traditional term 𝑓𝑢 is introduced as a correction to density (in the density computation sub-
routine rho_eos).

6 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

The variables used are :

𝒟𝑢,𝒟𝑣 : diffusive terms

ℱ𝑢,ℱ𝑣 : forcing terms

𝑓(𝑥, 𝑦) : Traditional Coriolis parameter 2Ω𝑠𝑖𝑛𝜑

𝑓(𝑥, 𝑦) : Non-traditional Coriolis parameter 2Ω𝑐𝑜𝑠𝜑

𝑔 : acceleration of gravity

𝜑(𝑥, 𝑦, 𝑧, 𝑡) : dynamic pressure 𝜑 = 𝑃/𝜌0, with P the total pressure

𝜌0 + 𝜌(𝑥, 𝑦, 𝑧, 𝑡) : total in situ density

𝑢, 𝑣, 𝑤 : the (x,y,z) components of vector velocity v⃗

1.1.3 Wave-averaged Equations

MRL_WCI Activate wave-current interactions
MRL_CEW Activate current effect on waves (2-way interaction)
ANA_WWAVE Analytical (constant) wave parameters (Hs,Tp,Dir)
WAVE_OFFLINE Activate wave forcing from offline model/data
WKB_WWAVE Activate CROCO’s monochromatic (WKB) model
OW_COUPLING Activate coupling with spectral wave model (WW3)
WAVE_FRICTION Activate bottom friction for WKB model and WAVE_STREAMING
WAVE_STREAMING Activate bottom streaming (needs WAVE_FRICTION)
STOKES_DRIFT Activate Stokes drift

Preselected options:

define STOKES_DRIFT

A vortex-force formalism for the interaction of surface gravity waves and currents is implemented in CROCO
[Marchesiello et al., 2015, Uchiyama et al., 2010]. Eulerian wave-averaged current equations for mass, momentum,
and tracers are included based on an asymptotic theory by McWilliams et al. [2004] plus non-conservative wave
effects due to wave breaking, associated surface roller waves, bottom streaming, and wave-enhanced vertical mixing
and bottom drag especially for coastal and nearshore applications. The wave information is provided by either
a spectrum-peak WKB wave-refraction model that includes the effect of currents on waves, or, alternatively, a
spectrum-resolving wave model (e.g., WAVEWATCH3) can be used. In nearshore applications, the currents’ cross-
shore and vertical structure is shaped by the wave effects of near-surface breaker acceleration, vertical component
of vortex force, and wave-enhanced pressure force and bottom drag.

1.1.3.1 Equations in Cartesian coordinates

In the Eulerian wave-averaged current equations, terms for the wave effect on currents (WEC) are added to the
primitive equations. Three new variables are defined:

𝜉𝑐 = 𝜉 + 𝜉

𝜑𝑐 = 𝜑+ 𝜑

v⃗𝐿 = v⃗ + v⃗𝑆

where 𝜉𝑐 is a composite sea level, 𝜑𝑐 absorbs the Bernoulli head 𝜑, v⃗𝐿 is the wave-averaged Lagrangian velocity,
sum of Eulerian velocity and Stokes drift v⃗𝑆 . The 3D Stokes velocity is non-divergent and defined for a monochro-

1.1. Governing Equations 7

Croco Documentation, Release 2.0.0

matic wave field (amplitude A, wavenumber vector k⃗ = (𝑘𝑥, 𝑘𝑦), and frequency 𝜎) by:

𝑢𝑆 =
𝐴2𝜎

2 sinh2 (𝑘𝐷)
cosh (2𝑘(𝑧 + ℎ)) 𝑘𝑥

𝑣𝑆 =
𝐴2𝜎

2 sinh2 (𝑘𝐷)
cosh (2𝑘(𝑧 + ℎ)) 𝑘𝑦

𝑤𝑆 = −
∫︁ 𝑧

−ℎ

(︂
𝜕𝑢𝑆
𝜕𝑥

+
𝜕𝑣𝑆
𝜕𝑦

)︂
𝑑𝑧′

Where 𝐷 = ℎ+ 𝜉𝑐. The quasi-static sea level and Bernouilli head are:

𝜉 = − 𝐴2𝑘

2 sinh (2𝑘𝐷)

𝜑 =
𝐴2𝜎

4𝑘 sinh2 (𝑘𝐷)

∫︁ 𝑧

−ℎ

𝜕2k⃗.⃗v
𝜕𝑧′2

sinh (2𝑘(𝑧 − 𝑧′)) 𝑑𝑧′

The primitive equations become (after re-organizing advection and vortex force terms):

𝜕𝑢

𝜕𝑡
+ ∇⃗. (⃗v𝐿𝑢)− 𝑓𝑣𝐿 = −𝜕𝜑

𝑐

𝜕𝑥
+

(︂
𝑢𝑆
𝜕𝑢

𝜕𝑥
+ 𝑣𝑆

𝜕𝑣

𝜕𝑥

)︂
+ ℱ𝑢 +𝒟𝑢 + ℱ𝒲

𝑢

𝜕𝑣

𝜕𝑡
+ ∇⃗. (⃗v𝐿𝑣) + 𝑓𝑢𝐿 = −𝜕𝜑

𝑐

𝜕𝑦
+

(︂
𝑢𝑆
𝜕𝑢

𝜕𝑦
+ 𝑣𝑆

𝜕𝑣

𝜕𝑦

)︂
+ ℱ𝑣 +𝒟𝑣 + ℱ𝒲

𝑣

𝜕𝜑𝑐

𝜕𝑧
+
𝜌𝑔

𝜌0
= v⃗𝑆 .

𝜕v⃗
𝜕𝑧

𝜕𝐶

𝜕𝑡
+ ∇⃗. (⃗v𝐿𝐶) = ℱ𝐶 +𝒟𝐶 + ℱ𝒲

𝐶

∇⃗.⃗v𝐿 = 0

𝜌 = 𝜌(𝑇, 𝑆, 𝑃)

The variables used are :

𝒟𝑢,𝒟𝑣,𝒟𝐶 : diffusive terms (including wave-enhaced bottom drag and mixing)

ℱ𝑢,ℱ𝑣,ℱ𝐶 : forcing terms

ℱ𝒲
𝑢,ℱ𝒲

𝑣,ℱ𝒲
𝐶 : wave forcing terms (bottom streaming, breaking acceleration)

𝑓(𝑥, 𝑦) : Traditional Coriolis parameter 2Ω𝑠𝑖𝑛𝜑

𝑔 : acceleration of gravity

𝜑(𝑥, 𝑦, 𝑧, 𝑡) : dynamic pressure 𝜑 = 𝑃/𝜌0, with P the total pressure

𝜌0 + 𝜌(𝑥, 𝑦, 𝑧, 𝑡) : total in situ density

𝑢, 𝑣, 𝑤 : the (x,y,z) components of vector velocity v⃗

1.1.3.2 Embedded wave model

WKB_WWAVE Activate WKB wave model
WAVE_ROLLER Activate wave rollers
WAVE_FRICTION Activate bottom friction
WKB_ADD_DIFF Activate additional diffusion to wave number field
MRL_CEW Active current effect on waves
WKB_KZ_FILTER Activate space filter on ubar, vbar, zeta for CEW
WKB_TIME_FILTER Activate time filter on ubar, vbar, zeta for CEW
WAVE_RAMP Activate wave ramp
ANA_BRY_WKB Read boundary data from croco.in
WKB_OBC_WEST Offshore wave forcing at the western boundary
WKB_OBC_EAST Offshore wave forcing at the eastern boundary

8 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Preselected options:

ifdef MRL_CEW
undef WKB_KZ_FILTER
undef WKB_TIME_FILTER
endif
define WKB_ADD_DIFF
if defined SHOREFACE || defined SANDBAR || (defined RIP && !defined BISCA)
define ANA_BRY_WKB
endif

A WKB wave model for monochromatic waves is embedded in CROCO following Uchiyama et al. [2010]. It
is based on the conservation of wave action 𝒜 = 𝐸/𝜎 and wavenumber k – wave crest conservation – and is
particularly suitable for nearshore beach applications, allowing refraction from bathymetry and currents (but no
diffraction or reflection), with parametrizations for wave breaking and bottom drag:

𝜕𝒜
𝜕𝑡

+ ∇⃗.𝒜c⃗𝑔 = −𝜖
𝑤

𝜎

𝜕k⃗

𝜕𝑡
+ c⃗𝑔.∇k⃗ = −k⃗.∇V⃗ − 𝑘𝜎

sinh 2𝑘𝐷
∇𝐷

V⃗ is the depth-averaged velocity vector and 𝜎 is the intrinsic frequency defined by the linear dispersion relation
𝜎2 = 𝑔𝑘 tanh 𝑘𝐷. Current effects on waves are noticeable in the groupe velocity 𝑐𝑔 which gets two components:
the doppler shift due to currents on waves and the groupe velocity of the primary carrier waves :

c⃗𝑔 = V⃗ +
𝜎

2𝑘2

(︂
1 +

2𝑘𝐷

sinh 2𝑘𝐷

)︂
k⃗

The currents may need filtering before entering the wave model equations because the current field should evolve
slowly with respect to waves in the asymptotic regime described by McWilliams et al. [2004]. By default, this
filtering is turned off (WKB_KZ_FILTER, WKB_TIME_FILTER).

𝜖𝑤 is the depth-integrated rate of wave energy dissipation due to depth-induced breaking 𝜖𝑏 (including white
capping) and bottom friction 𝜖𝑤𝑑, both of which must be parameterized (in WKB, WW3 or CROCO if defined
WAVE_OFFLINE):

𝜖𝑤 = 𝜖𝑏 + 𝜖𝑤𝑑

1.1.3.3 Breaking acceleration and bottom streaming

A formulation for 𝜖𝑏 is needed in both the wave model (dissipation term) and the circulation model (acceleration
term). In the wave-averaged momentum equations of the circulation model, the breaking acceleration enters as a
body force through ℱ𝒲 :

F⃗b =
𝜖𝑏

𝜌𝜎
k⃗ 𝑓𝑏(𝑧)

where 𝑓𝑏(𝑧) is a normalized vertical distribution function representing vertical penetration of momentum associated
with breaking waves from the surface. The penetration depth is controlled by a vertical length-scale taken as𝐻𝑟𝑚𝑠.

The wave model can also include a roller model with dissipation 𝜖𝑟. In this case:

F⃗b =
(1− 𝛼𝑟)𝜖𝑏 + 𝜖𝑟

𝜌𝜎
k⃗ 𝑓𝑏(𝑧)

The idea is that some fraction 𝛼𝑟 of wave energy is converted into rollers that propagate toward the shoreline before
dissipating, while the remaining fraction 1 − 𝛼𝑟 causes local dissipation (hence current acceleration). It can be
useful for correcting 𝜖𝑏 with some flexibility to depict different breaking wave and beach forms (e.g., spilling or

1.1. Governing Equations 9

Croco Documentation, Release 2.0.0

plunging breakers, barred or plane beaches), although the parameter 𝐵𝑏 can also be used for that. See Uchiyama
et al. [2010] for the roller equation and 𝜖𝑟 formulation.

Wave-enhanced bottom dissipation enters in the momentum equations through a combined wave-current drag for-
mulation (see parametrizations) and bottom streaming. The latter is due to dissipation of wave energy in the wave
boundary layer that causes the instantaneous, oscillatory wave bottom orbital velocities to be slightly in phase from
quadrature; this causes a wave stress (bottom streaming) in the wave bottom boundary layer along the direction of
wave propagation [Longuet-Higgins, 1953]. The effect of bottom streaming in momentum balance is accounted
for by using the wave dissipation due to bottom friction with an upward decaying vertical distribution:

F⃗st =
𝜖𝑤𝑑

𝜌𝜎
k⃗ 𝑓𝑠𝑡(𝑧)

where 𝑓𝑠𝑡(𝑧) is a vertical distribution function.

1.1.3.4 Formulation of wave energy dissipation

WAVE_SFC_BREAK Activate surface breaking acceleration
WAVE_BREAK_CT93 Activate Church and Thornton [1993] breaking acceleration (default)
WAVE_BREAK_TG86 Activate Thornton and Guza [1983], Thornton and Guza [1986]

Preselected options:

define WAVE_BREAK_CT93
undef WAVE_BREAK_TG86
undef WAVE_SFC_BREAK

While a few formulations for 𝜖𝑏 are implemented in CROCO, the one by Church and Thornton [1993] is generally
successful for nearshore beach applications:

𝜖𝑏 =
3

16

√
𝜋𝜌𝑔𝐵3

𝑏

𝐻3
𝑟𝑚𝑠

𝐷

{︂
1 + tanh

[︂
8

(︂
𝐻𝑟𝑚𝑠

𝛾𝑏𝐷
− 1

)︂]︂}︂⎧⎨⎩1−

[︃
1 +

(︂
𝐻𝑟𝑚𝑠

𝛾𝑏𝐷

)︂2
]︃−2.5

⎫⎬⎭
where 𝐵𝑏 and 𝛾𝑏 are empirical parameters related to wave breaking. 𝛾𝑏 represents the wave height-to-depth ratio
for which all waves are assumed to be breaking and 𝐵𝑏 is the fraction of foam on the face, accounting for the type
of breaker. 𝐻𝑟𝑚𝑠 is the RMS wave height. For the DUCK94 experiment, Uchiyama et al. [2010] suggest 𝛾𝑏 = 0.4
and𝐵𝑏 = 0.8, while for Biscarrosse Beach, Marchesiello et al. [2015] use 𝛾𝑏 = 0.3 and𝐵𝑏 = 1.3 from calibration
with video cameras.

For 𝜖𝑤𝑑, the dissipation caused by bottom viscous drag on the primary waves, we use a parameterization for the
realistic regime of a turbulent wave boundary layer, consistent with the WKB spectrum-peak wave modeling:

𝜖𝑤𝑑 =
1

2
√
𝜋
𝜌𝑓𝑤𝑢

3
𝑜𝑟𝑏

where 𝑢𝑜𝑟𝑏 is the wave orbital velocity magnitude and 𝑓𝑤 is a wave friction factor, function of roughness length
𝑧0:

𝑢𝑜𝑟𝑏 =
𝜎𝐻𝑟𝑚𝑠

2 sinh 𝑘𝐷

𝑓𝑤 = 1.39

(︂
𝜎𝑧0
𝑢𝑜𝑟𝑏

)︂0.52

10 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.1.4 Non-Hydrostatic, Non-Boussinesq Equations

The full set of Navier-Stokes equations for a free-surface ocean is explicitly integrated in the non-hydrostatic,
non-Boussinesq version of CROCO (#define NBQ). In this approach, acoustic waves are solved explicitly to avoid
Boussinesq-degeneracy, which inevitably leads to a 3D Poisson system in non-hydrostatic Boussinesq methods
– detrimental to computational costs and challenging to implement within a split-explicit barotropic/baroclinic
model.

NBQ equations include the momentum and continuity equations, the surface kinematic relation (for free surface),
temperature, salinity – or other tracer 𝐶 – and the equation of state, which reads in Cartesian coordinates:

𝜕𝜌𝑢

𝜕𝑡
+ ∇⃗. (𝜌v⃗𝑢)− 𝜌𝑓𝑣 + 𝜌𝑓𝑤 = −𝜕𝑃

𝜕𝑥
+ 𝜆

𝜕∇⃗.⃗v
𝜕𝑥

+ ℱ𝑢 +𝒟𝑢

𝜕𝜌𝑣

𝜕𝑡
+ ∇⃗. (𝜌v⃗𝑣) + 𝜌𝑓𝑢 = −𝜕𝑃

𝜕𝑦
+ 𝜆

𝜕∇⃗.⃗v
𝜕𝑦

+ ℱ𝑣 +𝒟𝑣

𝜕𝜌𝑤

𝜕𝑡
+ ∇⃗. (𝜌v⃗𝑤)− 𝜌𝑓𝑢 = −𝜕𝑃

𝜕𝑧
− 𝜌𝑔 + 𝜆

𝜕(∇⃗.⃗v)

𝜕𝑧
+ ℱ𝑤 +𝒟𝑤

𝜕𝜌

𝜕𝑡
= −∇⃗.(𝜌v⃗)

𝜕𝜉

𝜕𝑡
= 𝑤𝑓 |𝑧=𝜉 − v⃗|𝑧=𝜉.∇⃗𝜉

𝜕𝜌𝐶

𝜕𝑡
= −∇⃗.(𝜌v⃗𝐶) + ℱ𝐶 +𝒟𝐶

𝜆 is the second (bulk) viscosity associated with compressibility (it can be used to damp acoustic waves).

A relation between 𝜌 and 𝑃 is now required. To that end, and as part of a time-splitting approach, density is
decomposed into slow and fast components based on a first-order decomposition concerning total pressure. In the
following, 𝑠 and 𝑓 subscripts refer to slow and fast-mode components, respectively:

𝜌 = 𝜌𝑠(𝑇, 𝑆, 𝑃) +

𝜌𝑓=𝑐
−2
𝑠 𝑃𝑓⏞ ⏟

𝜕𝜌

𝜕𝑃

⃒⃒⃒⃒
𝑇,𝑆

𝛿𝑃 +𝑂(𝛿𝑃 2)

𝑃 = 𝑃𝑎𝑡𝑚 +

∫︁ 𝜉

𝑧

(𝜌𝑠 − 𝜌0)𝑔 𝑑𝑧′⏟ ⏞
𝑆𝐿𝑂𝑊

+ 𝜌0𝑔(𝜉 − 𝑧) +

𝑃𝑓⏞ ⏟
𝛿𝑃⏟ ⏞

𝐹𝐴𝑆𝑇

𝑐𝑠 is the speed of sound and 𝛿𝑃 = 𝑃𝑓 is the nonhydrostatic pressure.

The Navier-Stokes equations are then integrated with two different time steps within the time-splitting approach.
The slow mode is identical to ROMS, whereas the fast mode (in the NBQ equations) is 3D and the fast time step
includes the integration of the compressible terms of the momentum and continuity equations. In vector form:

𝜕𝜌v⃗
𝜕𝑡

=−∇⃗.(𝜌v⃗⊗ v⃗)− 2𝜌Ω⃗× v⃗− ∇⃗(

∫︁ 𝜉𝑓

𝑧

(𝜌𝑠 − 𝜌0)𝑔 𝑑𝑧′) + ℱ⃗v⃗ + �⃗�v⃗⏟ ⏞
𝑆𝐿𝑂𝑊

−𝜌0𝑔∇⃗𝜉𝑓 − ∇⃗𝑃𝑓 + 𝜌g⃗ + 𝜆∇⃗(∇⃗.⃗v)⏟ ⏞
𝐹𝐴𝑆𝑇

𝜕𝜌𝑓
𝜕𝑡

=− 𝜕𝜌𝑠
𝜕𝑡
− ∇⃗.(𝜌v⃗)

𝑃𝑓 = 𝑐2𝑠 𝜌𝑓

𝜕𝜉𝑓
𝜕𝑡

= 𝑤𝑓 |𝑧=𝜉 − v⃗𝑓 |𝑧=𝜉.∇⃗𝜉𝑓
𝜕𝜌𝐶𝑠
𝜕𝑡

=− ∇⃗.(𝜌v⃗𝐶𝑠) + ℱ𝐶 +𝒟𝐶

𝜌𝑠 = 𝜌(𝑇𝑠, 𝑆𝑠, 𝜉𝑓)

𝜌 = 𝜌𝑠 + 𝜌𝑓

1.1. Governing Equations 11

Croco Documentation, Release 2.0.0

The momentum is integrated both in slow and fast modes but the right-hand-side of the equation is split in two
parts: a slow part, made of slowly varying terms (advection, Coriolis force, baroclinic pressure force and viscous
dissipation), and a fast part, made of fast-varying terms (the surface-induced and compressible pressure force, the
weight and the dissipation associated with bulk-viscosity). This momentum equation is numerically integrated
twice, once with a large time-step keeping the fast part constant, and once with a smaller time-step keeping the
slow part constant. This is much more computationally efficient than integrating the whole set of equations at the
same fast time step. More details can be found in Auclair et al. [2018].

Note that the solved acoustic waves can become pseudo-acoustic if their phase speed 𝑐𝑠 is artificially slowed down
(it is a model input). In this case, high-frequency processes associated with bulk compressibility may be unphysical,
but a coherent solution for slow non-hydrostatic dynamics is preserved, while the CFL constraint is relaxed.

1.2 Model variables

Model variables are defined in .h Fortran 77 files :

1.2.1 Domain variables (grid.h)

grid.h : Environmental two-dimensional arrays associated with curvilinear horizontal coordinate system

h : Model topography (bottom depth [m] at RHO-points.)
dh : Topograhy increment in case of moving bathymetry
f : Coriolis parameter [1/s].
fomn : Compound term, f/[pm*pn] at RHO points.

angler : Angle [radians] between XI-axis and the direction to the EAST at RHO-points.

latr : Latitude (degrees_north) at RHO-, U-, and V-points.
latu
latv
lonr : Longitude (degrees_east) at RHO-, U-, and V-points.
lonu
lonv

xp : XI-coordinates [m] at PSI-points.
xr : XI-coordinates [m] at RHO-points.
yp : ETA-coordinates [m] at PSI-points.
yr : ETA-coordinates [m] at RHO-points.

pm : Coordinate transformation metric “m” [1/meters] associated with the differential distances in XI.
pn : Coordinate transformation metric “n” [1/meters]associated with the differential distances in ETA.
om_u : Grid spacing [meters] in the XI -direction at U-points.
om_v : Grid spacing [meters] in the XI -direction at V-points.
on_u : Grid spacing [meters] in the ETA-direction at U-points.
on_v : Grid spacing [meters] in the ETA-direction at V-points.

dmde : ETA-derivative of inverse metric factor “m”, d(1/M)/d(ETA).
dndx : XI-derivative of inverse metric factor “n”, d(1/N)/d(XI).

12 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

pmon_p : Compound term, pm/pn at PSI-points.
pmon_r : Compound term, pm/pn at RHO-points.
pmon_u : Compound term, pm/pn at U-points.
pnom_p : Compound term, pn/pm at PSI-points.
pnom_r : Compound term, pn/pm at RHO-points.
pnom_v : Compound term, pn/pm at V-points.

rmask : Land-sea masking arrays at RHO-,U-,V- and PSI-points (rmask,umask,vmask) = (0=Land, 1=Sea)
umask
vmask
pmask : pmask=(0=Land, 1=Sea, 1-gamma2 =boundary).

reducu : reduction coefficient along x-axis for rivers sections
reducv : reduction coefficient along y-axis for rivers sections

1.2.2 Barotropic variables (ocean2d.h)

ocean2d.h : 2D dynamical variables for fast mode

zeta,rzeta : Free surface elevation [m] and its time tendency;
ubar,rubar : Vertically integrated 2D velocity components in
vbar,rvbar : XI- and ETA-directions and their time tendencies;

1.2.3 Tri-dimensionnal variables (ocean3d.h)

ocean3d.h : 3D tracers dynamical variables for baroclinic mode

u,v : 3D velocity components in XI- and ETA-directions
t : tracer array (temperature, salinity, passive tracers, sediment)
Hz : level thickness
z_r : depth at rho point
z_w : depth at w point
Huon : transport a U point
Hvon : transport at V point
We, Wi : vertical velocity (explicit, implicit)
rho : density anomaly
rho1 : potential density at 1 atm

1.2. Model variables 13

Croco Documentation, Release 2.0.0

1.2.4 Surface forcing (forces.h)

forces.h :

Surface momemtum flux (wind stress) :

sustr : XI- and ETA-components of kinematic surface momentum flux
svstr : wind stresses) defined at horizontal U- and V-points.dimensioned as [m^2/s^2].

Bottom mometum flux :

bustr : XI- and ETA-components of kinematic bottom momentum flux
bvstr : (drag) defined at horizontal U- and V-points [m^2/s^2].!

Surface tracers fluxes :

stflx : Kinematic surface fluxes of tracer type variables at horizontal RHO-points. Physical dimensions [degC
m/s] - temperature; [PSU m/s] - salinity.
dqdt : Kinematic surface net heat flux sensitivity to SST [m/s].
sst : Current sea surface temperature [degree Celsius].
dqdtg : Two-time-level grided data for net surface heat flux
sstg : sensitivity to SST grided data [Watts/m^2/Celsius] and sea surface temperature [degree Celsius].
dqdtp : Two-time-level point data for net surface heat flux
sstp : sensitivity to SST grided data [Watts/m^2/Celsius] and sea surface temperature [degree Celsius].
tsst : Time of sea surface temperature data.
sss : Current sea surface salinity [PSU].
tair : surface air temperature at 2m [degree Celsius].
wsp : wind speed at 10m [degree Celsius].
rhum : surface air relative humidity 2m [fraction]
prate : surface precipitation rate [cm day-1]
radlw : net terrestrial longwave radiation [Watts meter-2]
radsw : net solar shortwave radiation [Watts meter-2]
patm2d : atmospheric pressure above mean seal level
paref : reference pressure to compute inverse barometer effect
srflx : Kinematic surface shortwave solar radiation flux [degC m/s] at horizontal RHO-points

Wind induced waves everything is defined at rho-point :

wfrq : wind-induced wave frequency [rad/s]
uorb : xi-component of wave-induced bed orbital velocity [m/s]
vorb : eta-component of wave-induced bed orbital velocity [m/s]
wdrx : cosine of wave direction [non dimension]
wdre : sine of wave direction [non dimension]
whrm : (RMS) wave height (twice the wave amplitude) [m]
wepb : breaking dissipation rate (epsilon_b term) [m3/s3]
wepd : frictional dissipation rate (epsilon_d term) [m3/s3]
wepr :roller dissipation rate (epsilon_r term) [m3/s3]

14 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

wbst : frictional dissipation stress (e_d k/sigma) [m2/s2]

Wave averaged quantities :

brk2dx : xi-direciton 2D breaking dissipation (rho)
brk2de : eta-direction 2D breaking dissipation (rho)
frc2dx : xi-direciton 2D frictional dissipation (rho)
frc2de : eta-direction 2D frictional dissipation (rho)
ust2d : xi-direciton Stokes transport (u-point)
vst2d : eta-direciton Stokes transport (v-point)
sup : quasi-static wave set-up (rho-point)
calP : pressure correction term (rho-point)
Kapsrf : Bernoulli head terrm at the surface (rho-point)
brk3dx : xi-direciton 3D breaking dissipation (rho)
brk3de : eta-direction 3D breaking dissipation (rho)
ust : xi-direciton 3D Stokes drift velocity (u-point)
vst : eta-direciton 3D Stokes drift velocity (v-point)
wst : vertical 3D Stokes drift velocity (rho-point)
Kappa : 3D Bernoulli head term (rho-point)
kvf : vertical vortex force term (K term, 3D, rho-point)
Akb : breaking-wave-induced additional diffusivity (w-point)
Akw : wave-induced additional diffusivity (rho-point)
E_pre : previous time-step value for Akw estimation (rho)
frc3dx : xi-direciton 3D frictional dissipation (rho)
frc3de : eta-direction 3D frictional dissipation (rho)

1.3 Grid and Coordinates

Related CPP options:

CURVGRID Activate curvilinear coordinate transformation
SPHERICAL Activate longitude/latitude grid positioning
MASKING Activate land masking
WET_DRY Activate wetting-Drying scheme
NEW_S_COORD Choose new vertical S-coordinates

Preselected options:

define CURVGRID
define SPHERICAL
define MASKING
undef WET_DRY
undef NEW_S_COORD

1.3. Grid and Coordinates 15

Croco Documentation, Release 2.0.0

1.3.1 Vertical Grid parameters

Two vertical transformations are available for the generalized vertical terrain-following vertical system : By default,
we have :

𝑧(𝑥, 𝑦, 𝜎, 𝑡) = 𝑧0(𝑥, 𝑦, 𝜎) + 𝜁(𝑥, 𝑦, 𝑡)

[︂
1 +

𝑧0(𝑥, 𝑦, 𝜎)

ℎ(𝑥, 𝑦)

]︂
(1.1)

𝑧0(𝑥, 𝑦, 𝜎) = ℎ𝑐𝜎 + [ℎ(𝑥, 𝑦)− ℎ𝑐]𝐶𝑠(𝜎) (1.2)

When activating the cpp key NEW_S_COORD, we have:

𝑧(𝑥, 𝑦, 𝜎, 𝑡) = 𝜁(𝑥, 𝑦, 𝜎) + [𝜁(𝑥, 𝑦, 𝑡) + ℎ(𝑥, 𝑦)] 𝑧0(𝑥, 𝑦, 𝜎) (1.3)

𝑧0(𝑥, 𝑦, 𝜎) =
ℎ𝑐𝜎 + ℎ(𝑥, 𝑦)𝐶𝑠(𝜎)

ℎ𝑐 + ℎ(𝑥, 𝑦)
(1.4)

with :

• 𝑧0(𝑥, 𝑦, 𝜎) a nonlinear vertical transformation

• 𝜁(𝑥, 𝑦, 𝜎) the free-surface

• ℎ(𝑥, 𝑦) the ocean bottom

• 𝜎 a fractional vertical stretching coordinate, −1 ≤ 𝜎 ≤ 0

• ℎ𝑐 a positive thickness controlling the stretching

• 𝐶𝑠(𝜎) a nondimensional, monotonic, vertical stretching, −1 ≤ (𝐶𝜎) ≤ 0

Vertical grid stretching is controlled by the following parameters, which have to be set similarly in croco.in, and
crocotools_param.m:

theta_s

Vertical S-coordinate surface stretching parameter.
When building the climatology and initial CROCO
files, we have to define the vertical grid.
Warning! The different vertical grid parameters
should be identical in this crocotools_param.m
and in croco.in. This is a serious cause of bug.

theta_b Vertical S-coordinate bottom stretching parameter.
hc

Vertical S-coordinate Hc parameter.
It gives approximately the transition depth between
the horizontal surfacelevels and the bottom
terrain following levels. (Note it should be inferior to
hmin in case of Vtransform =1).

Then we have, with 𝑁 the number of vertical levels:

• with the old transformation :

𝐶𝑠(𝜎) = (1− 𝜃𝑏)
𝑠𝑖𝑛ℎ(𝜃𝑠 𝜎)

𝑠𝑖𝑛ℎ(𝜃𝑠)
+ 𝜃𝑏

[︂
0.5 𝑡𝑎𝑛ℎ ((𝜎 + 0.5) 𝜃𝑠)

𝑡𝑎𝑛ℎ(0.5 𝜃𝑠)
− 0.5

]︂
• with NEW_S_COORD defined :

16 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

𝑠𝑐 =
𝜎 −𝑁
𝑁

(1.5)

𝑐𝑠𝑓 =
1.− 𝑐𝑜𝑠ℎ(𝜃𝑠 𝑠𝑐)

𝑐𝑜𝑠ℎ(𝜃𝑠)− 1.
if 𝜃𝑏 > 0, 𝑐𝑠𝑓 = −𝑠𝑐2 otherwise (1.6)

𝐶𝑠(𝜎) =
𝑒𝜃𝑏𝑐𝑠𝑓 − 1.

1.− 𝑒−𝜃𝑏
if 𝜃𝑠 > 0, 𝐶𝑠(𝜎) = 𝑐𝑠𝑓 otherwise (1.7)

Other parameters have to be set to prepare the grid file in crocotools_param.m:

vtransform

S-coordinate type (1: old- ; 2: new- coordinates).
It is associated to #NEW_S_COORD cpp-keys in
CROCO source code.

hmin

Minimum depth in meters.
The model depth is cut at this level to prevent, for
example, the occurrence of model grid cells
without water. This does not influence the masking
routines. At lower resolution, hmin should
be quite large (for example, 150m for dl=1/2).
Otherwise, since topography smoothing is based on,
the bottom slopes can be totally eroded.

hmax_coast

Maximum depth under the mask.
It prevents selected isobaths (here 500 m) from going
under the mask. If this is the case, this could
be a source of problems for western boundary
currents (for example).

hmax Maximum depth
rtarget

This variable controls the maximum value of the
-parameter that measures the slope of the sigma
layers [Beckmann and Haidvogel, 1993] : To prevent
horizontal pressure gradient errors, well
in terrain-following coordinate models [Haney,
1991], realistic topography requires some smoothing.
Empirical results have shown that reliable model
results are obtained if it does not exceed 0.2.

n_filter_deep_topo Number of passes of a Hanning filter to prevent the
occurrence of noise and isolated seamounts on deep
regions.

n_filter_final

Number of passes of a Hanning filter at the end of the
smoothing process to be sure that no noise is present
in the topography.

The effects of theta_s, theta_b, hc, and N can be tested using the Matlab script : croco_tools/
Preprocessing_tools/test_vgrid.m

1.3. Grid and Coordinates 17

Croco Documentation, Release 2.0.0

Below are some examples of different vertical choices (Courtesy of ROMS-RUTGERS team) :

Vtransform=1, 𝜃𝑆 = 7.0, 𝜃𝐵 = 0.1 Vtransform=1, 𝜃𝑆 = 7.0, 𝜃𝐵 =
1.0

Vtransform=1, 𝜃𝑆 = 7.0, 𝜃𝐵 =
3.0

Vtransform =1, 𝜃𝑆 = 7.0, 𝜃𝐵 =
1.0

Vtransform=2, 𝜃𝑆 = 7.0, 𝜃𝐵 =
1.0

Vtransform=2, 𝜃𝑆 = 7.0, 𝜃𝐵 =
3.0

1.3.2 Grid staggering

The discretization is based on a staggered grid where not all variables are stored at the same grid points.

The free-surface (zeta), density (rho), and active/passive tracers (t) are located at the center of the cell whereas the
horizontal velocity (u and v) are located at the edges of the cell.

---- v(i,j+1) ----
| |
| |

u(i,j) rho(i,j) u(i+1,j)
| |
| |
---- v(i,j) ----

More information about this and the array indices when using MPI parallelisation is given in staggered grids.

18 Chapter 1. Model Documentation

https://myroms.org/

Croco Documentation, Release 2.0.0

1.3.3 Wetting-Drying

The Wetting-Drying scheme is derived from John Warner’s code (Rutgers ROMS) and adapted to the time stepping
scheme of CROCO. The main idea is to cancel the outgoing momentum flux (not the incoming) from a grid cell if
its total depth is below a threshold value (critical depth Dcrit between 5 and 20 cm according to local slope; Dcrit
min and max adjustable in param.h). This scheme is tested in the Thacker case producing oscillations in a rotating
bowl for which an analytical solution is known.

1.4 Numerics

1.4.1 Overview

CROCO solves the primitive equations in an Earth-centered rotating environment. It is discretized in coastline-
and terrain-following curvilinear coordinates using high-order numerical methods. It is a split-explicit, free-surface
ocean model, where short time steps are used to advance the surface elevation and barotropic momentum, with a
much larger time step used for temperature, salinity, and baroclinic momentum.

The complete time stepping algorithm is described in Shchepetkin and McWilliams [2005]; see also Soufflet et al.
[2016]. The model has a 2-way time-averaging procedure for the barotropic mode, which satisfies the 3D continuity
equation. The specially designed 3rd order predictor-corrector time step algorithm allows a substantial increase in
the permissible time-step size.

Combined with the 3rd order time-stepping, a 3rd- or 5th-order, upstream-biased horizontal advection scheme (al-
ternatively WENO or TVD for monotonicity preservation) allows the generation of steep gradients, enhancing the
effective resolution of the solution for a given grid size [Soufflet et al., 2016, Shchepetkin and McWilliams, 1998,
Ménesguen et al., 2018, Borges et al., 2008]. Because of the implicit diffusion in upstream advection schemes,
explicit lateral viscosity is not needed in CROCO for damping numerical dispersion errors.

For vertical advection, SPLINE or WENO5 schemes are proposed (besides lower-order schemes). For SPLINES
(default), an option for an adaptive, Courant-number-dependent implicit scheme is propose that has the advantage to
render vertical advection unconditionally stable while maintaining good accuracy in locations with small Courant
numbers [Shchepetkin, 2015]. This is also available for tracers.

Tracers are treated similarly to momentum. A 3rd- or 5th-order upstream-biased horizontal advection scheme is
implemented, but in regional configurations the diffusion part of this scheme is rotated along isopycnal surfaces to
avoid spurious diapycnal mixing and loss of water masses [Marchesiello and Estrade, 2009, Lemarié et al., 2012].
For regional/coastal applications, a highly accurate pressure gradient scheme [Shchepetkin and McWilliams, 2003]
limits the other type of errors (besides spurious diacpynal mixing) frequently associated with terrain-following
coordinate models.

If a lateral boundary faces the open ocean, an active, implicit, upstream biased, radiation condition connects the
model solution to the surroundings [Marchesiello et al., 2001]. It comes with sponge layers for a better transition
between interior and boundary solutions (explicit Laplacian diffusion and/or newtonian damping)

For nearshore problems, where waves becomes the dominant forcing of circulation, a vortex-force formalism for
the interaction of surface gravity waves and currents is implemented in CROCO [Uchiyama et al., 2010].

CROCO can be used either as a Boussinesq/hystrostatic model, or a non-hydrostatic/non-Boussinesq model (NBQ;
Auclair et al. [2018]). The NBQ solver is relevant in problems from a few tens of meters to LES or DNS resolutions.
It comes with shock-capturing advection schemes (WENO5, TVD) and fully 3D turbulent closure schemes (GLS,
Smagorinsky).

CROCO includes a variety of additional features, e.g., 1D turbulent closure schemes (KPP, GLS) for surface and
benthic boundary layers and interior mixing; wetting and drying; sediment and biological models; AGRIF interface
for 2-way nesting; OASIS coupler for ocean-waves-atmosphere coupling. . .

1.4. Numerics 19

Croco Documentation, Release 2.0.0

1.4.2 Time Stepping

CROCO is discretized in time using a third-order predictor-corrector scheme (referred to as LFAM3) for tracers
and baroclinic momentum. It is a split-explicit, free-surface ocean model, where short time steps are used to
advance the surface elevation and barotropic momentum, with a much larger time step used for tracers, and baro-
clinic momentum. The model has a 2-way time-averaging procedure for the barotropic mode, which satisfies the
3D continuity equation. The specially designed 3rd order predictor-corrector time step algorithm is described in
Shchepetkin and McWilliams [2005] and is summarized in this subsection.

Fig. 1: Fig: schematic view of the Croco predictor-corrector hydrostatic kernel

General structure of the time-stepping:

call prestep3D_thread() ! Predictor step for 3D momentum and tracers
call step2d_thread() ! Barotropic mode
call step3D_uv_thread() ! Corrector step for momentum
call step3D_t_thread() ! Corrector step for tracers

1.4.2.1 3D momentum and tracers

Predictor-corrector approach : Leapfrog (LF) predictor with 3rd-order Adams-Moulton (AM) interpolation
(LFAM3 timestepping). This scheme is used to integrate 3D advection, the pressure gradient term, the continuity
equation and the Coriolis term which are all contained in the RHS operator (the time tendencies).

For a given quantity 𝑞 with 𝑞𝑡 = RHS(𝑞) we can write⎧⎪⎪⎨⎪⎪⎩
𝑞𝑛+1,⋆ = 𝑞𝑛−1 + 2𝛥𝑡 RHS {𝑞𝑛} (LF)

𝑞𝑛+
1
2 =

5

12
𝑞𝑛+1,⋆ +

2

3
𝑞𝑛 − 1

12
𝑞𝑛−1 (AM3)

𝑞𝑛+1 = 𝑞𝑛 +𝛥𝑡 RHS
{︁
𝑞𝑛+

1
2

}︁
(corrector)

20 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

which can be rewritten in a compact way as used in the Croco code :

𝑞𝑛+
1
2 =

(︂
1

2
− 𝛾
)︂
𝑞𝑛−1 +

(︂
1

2
+ 𝛾

)︂
𝑞𝑛 + (1− 𝛾)𝛥𝑡 RHS {𝑞𝑛}

𝑞𝑛+1 = 𝑞𝑛 +𝛥𝑡 RHS
{︁
𝑞𝑛+

1
2

}︁
with 𝛾 = 1

6 .

Physical parameterizations for vertical mixing, rotated diffusion and viscous/diffusion terms are computed once
per time-step using an Euler step.

1.4.2.2 Tracers-momentum coupling

The numerical integration of internal waves can be studied using the following subsystem of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑧𝑤 + 𝜕𝑥𝑢 = 0
𝜕𝑧𝑝+ 𝜌𝑔 = 0

𝜕𝑡𝑢+
1

𝜌0
𝜕𝑥𝑝 = 0

𝜕𝑡𝜌+ 𝜕𝑧(𝑤𝜌) = 0

Predictor step:

𝜕𝑥𝑝
𝑛 = 𝑔 𝜕𝑥

(︂∫︁ 0

𝑧

𝜌𝑛𝑑𝑧

)︂
→ 𝑢𝑛+

1
2 =

(︂
1

2
− 𝛾
)︂
𝑢𝑛−1 +

(︂
1

2
+ 𝛾

)︂
𝑢𝑛 + (1− 𝛾)

∆𝑡

𝜌0
(𝜕𝑥𝑝

𝑛)

𝑤𝑛 = −
∫︁ 𝑧

−𝐻
𝜕𝑥𝑢

𝑛𝑑𝑧′ → 𝜌𝑛+
1
2 =

(︂
1

2
− 𝛾
)︂
𝜌𝑛−1 +

(︂
1

2
+ 𝛾

)︂
𝜌𝑛 + (1− 𝛾)∆𝑡 𝜕𝑧(𝑤

𝑛𝜌𝑛)

Corrector step:

𝜕𝑥𝑝
𝑛+ 1

2 = 𝑔 𝜕𝑥

(︂∫︁ 0

𝑧

𝜌𝑛+
1
2 𝑑𝑧

)︂
→ 𝑢𝑛+1 = 𝑢𝑛 +

∆𝑡

𝜌0
(𝜕𝑥𝑝

𝑛+ 1
2)

𝑤𝑛+
1
2 = −

∫︁ 𝑧

−𝐻
𝜕𝑥

{︃
3𝑢𝑛+

1
2

4
+
𝑢𝑛 + 𝑢𝑛+1

8

}︃
𝑑𝑧′ → 𝜌𝑛+1 = 𝜌𝑛 + ∆𝑡 𝜕𝑧(𝑤

𝑛+ 1
2 𝜌𝑛+

1
2)

Consequences:

• 3D-momentum integrated before the tracers in the corrector

• 2 evaluations of the pressure gradient per time-step

• 3 evaluations of the continuity equation per time-step

1.4. Numerics 21

Croco Documentation, Release 2.0.0

1.4.2.3 Barotropic mode

Generalized forward-backward (predictor-corrector)
1. AB3-type extrapolation

𝐷𝑚+ 1
2 = 𝐻 +

(︂
3

2
+ 𝛽

)︂
𝜁𝑚 −

(︂
1

2
+ 2𝛽

)︂
𝜁𝑚−1 + 𝛽𝜁𝑚−2

𝑢𝑚+ 1
2 =

(︂
3

2
+ 𝛽

)︂
𝑢𝑚 −

(︂
1

2
+ 2𝛽

)︂
𝑢𝑚−1 + 𝛽𝑢𝑚−2

2. Integration of 𝜁

𝜁𝑚+1 = 𝜁𝑚 −∆𝜏 𝜕𝑥(𝐷𝑚+ 1
2𝑢𝑚+ 1

2)

3. AM4 interpolation

𝜁⋆ =

(︂
1

2
+ 𝛾 + 2𝜀

)︂
𝜁𝑚+1 +

(︂
1

2
− 2𝛾 − 3𝜀

)︂
𝜁𝑚 + 𝛾𝜁𝑚−1 + 𝜀𝜁𝑚−2

4. Integration of �̄�

𝑢𝑚+1 =
1

𝐷𝑚+1

[︁
𝐷𝑚𝑢𝑚 + ∆𝜏 RHS2D(𝐷𝑚+ 1

2 , 𝑢𝑚+ 1
2 , 𝜁⋆)

]︁
where the parameter values are (𝛽, 𝛾, 𝜀) = (0.281105, 0.088, 0.013) except when the filter_none option is activated
(see below).

1.4.2.4 Baroclinic-barotropic coupling

Slow forcing term of the barotrope by the barocline is extrapolated

ℱ𝑛+
1
2

3𝐷 =

{︂∫︁
rhs(𝑢, 𝑣)𝑑𝑧 − rhs2D(�̄�, 𝑣)

}︂𝑛+ 1
2

= Extrap(ℱ𝑛3𝐷,ℱ𝑛−1
3𝐷 ,ℱ𝑛−2

3𝐷)

22 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.4.2.4.1 M2_FILTER_POWER option

Barotropic integration from 𝑛 to 𝑛+𝑀*∆𝜏 (𝑀* ≤ 1.5𝑀)

Because of predictor-corrector integration two barotropic filters are needed

• ⟨𝜁⟩𝑛+1 → update of the vertical grid

• ⟨𝑈⟩𝑛+1 → correction of baroclinic velocities at time 𝑛+ 1

• ⟨⟨𝑈⟩⟩𝑛+
1
2 → correction of baroclinic velocities at time 𝑛+ 1

2

1.4.2.4.2 M2_FILTER_NONE option

Motivation: averaging filters can lead to excessive dissipation in the barotropic mode

Objective: put the minimum amount of dissipation to stabilize the splitting

Diffusion is introduced within the barotropic time-stepping rather than averaging filters by adapting the parameters
in the generalized forward-backward scheme

(𝛽, 𝛾, 𝜀) = (0.281105, 0.08344500− 0.51358400𝛼d, 0.00976186− 0.13451357𝛼d)

with 𝛼d ≈ 0.5.

Remarks:

• This option may require to increase NDTFAST = 𝛥𝑡3D/𝛥𝑡2D because the stability constraint of the modi-
fied generalized forward-backward scheme is less than the one of the original generalized forward-backward
scheme.

• The filter_none approach is systematically more efficient than averaging filters

1.4.2.5 Stability constraints

• Barotropic mode (note that considering an Arakawa C-grid divides the theoretical stability limit by a factor
of 2)

∆𝑡

√︃
𝑔𝐻

(︂
1

∆𝑥2
+

1

∆𝑦2

)︂
≤ 0.89

• 3D advection

1.4. Numerics 23

Croco Documentation, Release 2.0.0

𝛼𝑥adv + 𝛼𝑦adv + 𝛽𝛼𝑧adv ≤ 𝛼⋆horiz

where 𝛼𝑥adv, 𝛼𝑦adv, and 𝛼𝑧adv are the Courant numbers in each direction and 𝛽 = 𝛼⋆horiz/𝛼
⋆
vert a coefficient arising

from the fact that different advection schemes with different stability criteria may be used in the horizontal and
vertical directions. Typical CFL values for 𝛼⋆horiz and 𝛼⋆vert with Croco time-stepping algorithm are

Advection scheme Max Courant number (𝛼⋆)
C2 1.587
UP3 0.871
SPLINES 0.916
C4 1.15
UP5 0.89
C6 1.00

• Internal waves

∆𝑡𝑐1

√︂
1

∆𝑥2
+

1

∆𝑦2
≤ 0.843686

where 𝑐1 the phase speed associated with the first (fastest) baroclinic mode.

• Coriolis

𝑓∆𝑡 ≤ 1.58

1.4.3 Advection Schemes

1.4.3.1 Lateral Momentum Advection

Related CPP options:

UV_HADV_UP3 Activate 3rd-order upstream biased advection scheme
UV_HADV_UP5 Activate 5th-order upstream biased advection scheme
UV_HADV_C2

Activate 2nd-order centred advection scheme
(should be used with explicit momentum mixing)

UV_HADV_C4

Activate 4th-order centred advection scheme
(should be used with explicit momentum mixing)

UV_HADV_C6

Activate 6th-order centred advection scheme
(should be used with explicit momentum mixing)

UV_HADV_WENO5 Activate WENO 5th-order advection scheme
UV_HADV_TVD Activate Total Variation Diminushing scheme

Preselected options:

define UV_HADV_UP3
undef UV_HADV_UP5
undef UV_HADV_C2
undef UV_HADV_C4
undef UV_HADV_C6

(continues on next page)

24 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

(continued from previous page)

undef UV_HADV_WENO5
undef UV_HADV_TVD

These options are set in set_global_definitions.h as the default UV_HADV_UP3 is the only one recommended for
standard users.

1.4.3.2 Lateral Tracer advection

Related CPP options:

TS_HADV_UP3 3rd-order upstream biased advection scheme
TS_HADV_RSUP3 Split and rotated 3rd-order upstream biased advection

scheme
TS_HADV_UP5 5th-order upstream biased advection scheme
TS_HADV_RSUP5

Split and rotated 5th-order upstream biased advection
scheme
with reduced dispersion/diffustion

TS_HADV_C4 4th-order centred advection scheme
TS_HADV_C6

Activate 6th-order centred advection scheme

TS_HADV_WENO5 5th-order WENOZ quasi-monotonic advection
scheme for all tracers

BIO_HADV_WENO5

5th-order WENOZ quasi-monotone advection
scheme for
passive tracers (including biology and sediment
tracers)

Preselected options:

undef TS_HADV_UP3
define TS_HADV_RSUP3
undef TS_HADV_UP5
undef TS_HADV_RSUP5
undef TS_HADV_C4
undef TS_HADV_C6
undef TS_HADV_WENO5
if defined PASSIVE_TRACER || defined BIOLOGY || defined SEDIMENT
define BIO_HADV_WENO5
endif

TS_HADV_RSUP3 is recommended for realistic applications with variable bottom topography as it strongly re-
duces diapycnal mixing. It splits the UP3 scheme into 4th-order centered advection and rotated bilaplacian diffusion
with grid-dependent diffusivity. It calls for CPP options in set_global_definitions.h for the explicit treatment of
bilaplacian diffusion (see below). TS_HADV_RSUP3 is expensive in terms of computational cost and requires
more than 30 sigma levels to perform properly. Therefore, for small domains dominated by open boundary fluxes,
TS_HADV_UP5 may present a cheaper alternative and good compromise. TS_HADV_RSUP5 is still experimen-
tal but allows a decrease in numerical diffusivity compared to TS_HADV_RSUP3 by using 6th order rather than
4th-order centered advection (it resembles in spirit a split-rotated UP5 scheme but the use of bilaplacian rather

1.4. Numerics 25

Croco Documentation, Release 2.0.0

than trilaplacian diffusion keeps it 3rd order). TS_HADV_C4 has no implicit diffusion and is thus accompanied by
rotated Smagorinsky diffusion defined in set_global_definitions.h; it is not recommended for usual applications.
For RSUP family, by default the diffusive part is oriented along geopotential.

1.4.3.3 Vertical Momentum advection

Related CPP options:

UV_VADV_SPLINES 4th-order compact advection scheme
UV_VADV_C2 2nd-order centered advection scheme
UV_VADV_WENO5 5th-order WENOZ quasi-monotone advection scheme
UV_VADV_TVD Total Variation Diminushing (TVD) scheme

Preselected options:

#ifdef UV_VADV_SPLINES
#elif defined UV_VADV_WENO5
#elif defined UV_VADV_C2
#elif defined UV_VADV_TVD
#else
define UV_VADV_SPLINES
undef UV_VADV_WENO5
undef UV_VADV_C2
undef UV_VADV_TVD
#endif

1.4.3.4 Vertical Tracer advection

Related CPP options:

TS_VADV_SPLINES 4th-order compact advection scheme
TS_VADV_AKIMA 4th-order centered advection scheme with harmonic averaging
TS_VADV_C2 2nd-order centered advection scheme
TS_VADV_WENO5 5th-order WENOZ quasi-monotone advection scheme

Preselected options:

#ifdef TS_VADV_SPLINES
#elif defined TS_VADV_AKIMA
#elif defined TS_VADV_WENO5
#elif defined TS_VADV_C2
#else
undef TS_VADV_SPLINES
define TS_VADV_AKIMA
undef TS_VADV_WENO5
undef TS_VADV_C2
#endif

26 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.4.3.5 Adaptively implicit vertical advection

Related CPP options:

VADV_ADAPT_IMP Activate adapative, Courant number dependent implicit advection scheme
VADV_ADAPT_PRED Adaptive treatment at both predictor and corrector steps

Preselected options:

#ifdef VADV_ADAPT_IMP
undef VADV_ADAPT_PRED
define UV_VADV_SPLINES
undef UV_VADV_C2
undef UV_VADV_WENO5
undef UV_VADV_TVD
#endif
#ifdef VADV_ADAPT_IMP
define TS_VADV_SPLINES
undef TS_VADV_AKIMA
undef TS_VADV_WENO5
undef TS_VADV_C2
#endif

1.4.3.6 Numerical details on advection schemes

Fig. 2: Fig: variable location on an Arakawa C-grid. Tracer values are cell centered while velocities are defined
on interfaces.

𝜕𝑥(𝑢𝑞)|𝑥=𝑥𝑖
=

1

𝛥𝑥𝑖

{︁
𝑢𝑖+ 1

2
̃︀𝑞𝑖+ 1

2
− 𝑢𝑖− 1

2
̃︀𝑞𝑖− 1

2

}︁

1.4.3.6.1 Linear advection schemes

̃︀𝑞C2
𝑖− 1

2
=

𝑞𝑖 + 𝑞𝑖−1

2
(1.8)

̃︀𝑞C4
𝑖− 1

2
=

(︂
7

6

)︂ ̃︀𝑞C2
𝑖− 1

2
−
(︂

1

12

)︂
(𝑞𝑖+1 + 𝑞𝑖−2) (1.9)

̃︀𝑞UP3
𝑖− 1

2
= ̃︀𝑞C4

𝑖− 1
2

+ sign

(︂
1

12
, 𝑢𝑖− 1

2

)︂
(𝑞𝑖+1 − 3𝑞𝑖 + 3𝑞𝑖−1 − 𝑞𝑖−2) (1.10)

̃︀𝑞C6
𝑖− 1

2
=

(︂
8

5

)︂ ̃︀𝑞C4
𝑖− 1

2
−
(︂

19

60

)︂ ̃︀𝑞C2
𝑖− 1

2
+

(︂
1

60

)︂
(𝑞𝑖+2 + 𝑞𝑖−3) (1.11)

̃︀𝑞UP5
𝑖− 1

2
= ̃︀𝑞C6

𝑖− 1
2
− sign

(︂
1

60
, 𝑢𝑖− 1

2

)︂
(𝑞𝑖+2 − 5𝑞𝑖+1 + 10𝑞𝑖 − 10𝑞𝑖−1 + 5𝑞𝑖−2 − 𝑞𝑖−3) (1.12)

1.4. Numerics 27

Croco Documentation, Release 2.0.0

Fig. 3: Fig: amplification errors (left) and phase errors (right) for linear advection of order 2 to 6.

1.4.3.6.2 Split upwind schemes

Because odd-ordered advection schemes can be formulated as the sum of the next higher-order (centered) advection
scheme with a dissipation term it is possible to split the purely centered and dissipative parts of UP3 and UP5
schemes. In this case the centered part is treated within the predictor-corrector framework while the flow-dependent
dissipative part is treated with a one-step Euler scheme. Such splitting has two advantages:

1. It allows better stability for SUP3 and SUP5 schemes comapared to UP3 and UP5 schemes.

2. Isolating the dissipative part allows to rotate it in the neutral direction to reduce spurious diapycnal mixing
(RSUP3 scheme).

1.4.3.6.3 Splines reconstruction and Akima 4th-order schemes

Similar to a 4th-order compact scheme, the interfacial values for the splines reconstruction scheme are obtained as
a solution of a tridiagonal problem

Hz𝑘+1̃︀𝑞𝑘− 1
2

+ 2(Hz𝑘 + Hz𝑘+1)̃︀𝑞𝑘+ 1
2

+ Hz𝑘̃︀𝑞𝑘+ 3
2

= 3(Hz𝑘𝑞𝑘+1 + Hz𝑘+1𝑞𝑘)

where 𝑞𝑘 values should be understood in a finite-volume sense (i.e. as an average over a control volume).

The AKIMA scheme corresponds to a 4th-order accurate scheme where an harmonic averaging of the slopes is
used instead of the algebraic average used for a standard C4 scheme

̃︀𝑞𝑘+ 1
2

=
𝑞𝑘+1 + 𝑞𝑘

2
−
𝛿𝑞𝑘+1 − 𝛿𝑞𝑘

6
𝛿𝑞𝑘 =

⎧⎨⎩ 2
𝛿𝑞𝑘+ 1

2
𝛿𝑞𝑘− 1

2

𝛿𝑞𝑘+ 1
2

+ 𝛿𝑞𝑘− 1
2

, if 𝛿𝑞𝑘+ 1
2
𝛿𝑞𝑘− 1

2
> 0

0, otherwise

1.4.3.6.4 Adaptively implicit vertical advection

Idea: the vertical velocity Ω is split between an explicit and implicit contribution depending on the local Courant
number

Ω = Ω(e) + Ω(i), Ω(e) =
Ω

𝑓(𝛼𝑧adv, 𝛼max)
, 𝑓(𝛼𝑧adv, 𝛼max) =

{︂
1, 𝛼𝑧adv ≤ 𝛼max

𝛼/𝛼max, 𝛼𝑧adv > 𝛼max

• Ω(𝑒) is integrated with an explicit scheme with CFL 𝛼max.

• Ω(𝑖) is integrated with an implicit upwind Euler scheme.

28 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 4: Fig: amplification errors (left) and phase errors (right) for linear advection of order 5 and 6 and for Splines
reconstruction.

• 𝑓(𝛼𝑧adv, 𝛼max) is a function responsible for the splitting of Ω between an explicit and an implicit part.

This approach has the advantage to render vertical advection unconditionally stable and to maintain good accuracy
in locations with small Courant numbers. The current implementation is based on the SPLINES scheme for the
explicit part.

1.4.3.6.5 Total variation bounded scheme (WENO5)

Fig. 5: Fig: different stencils used to evaluate the interfacial value ̃︀𝑞𝑘+ 1
2

with WENO5 scheme

Nonlinear weighting between 3 evaluations of interfacial values based on 3 different stencils

̃︀𝑞𝑘− 1
2

= 𝑤0̃︀𝑞(0)𝑘− 1
2

+ 𝑤1̃︀𝑞(1)𝑘− 1
2

+ 𝑤2̃︀𝑞(2)𝑘− 1
2

where the weights are subject to the following constraints:

1. Convexity
∑︀2
𝑗=0 𝑤𝑗 = 1.

2. ENO property (Essentially non oscillatory).

3. 5th-order if 𝑞(𝑥) is smooth.

The resulting scheme is not monotonicity-preserving but instead it is Total Variation Bounded (TVB).

1.4. Numerics 29

Croco Documentation, Release 2.0.0

1.4.3.6.6 Total variation diminishing scheme

1.4.3.6.7 Upwinding of nonlinear terms

In CROCO the nonlinear advection terms are formulated as in Lilly (1965) :

𝜕𝑡(Hz𝑢) + 𝜕𝑥 ((Hz 𝑢)𝑢) + 𝜕𝑦 ((Hz 𝑣) 𝑢) + ... (1.13)
𝜕𝑡(Hz𝑣) + 𝜕𝑥 ((Hz 𝑢)𝑣) + 𝜕𝑦 ((Hz 𝑣) 𝑣) + ... (1.14)

which are discretised with third order accuracy as(︁
˜(Hz 𝑢)𝑢

)︁
𝑖,𝑗

= (H̃z 𝑢)C4
𝑖,𝑗 ̃︀𝑢UP3

𝑖,𝑗 (1.15)(︁
˜(Hz 𝑣)𝑢

)︁
𝑖+ 1

2 ,𝑗+
1
2

= (̃︂Hz 𝑣)C4
𝑖+ 1

2 ,𝑗+
1
2
̃︀𝑢UP3
𝑖+ 1

2 ,𝑗+
1
2

(1.16)

where the direction for upwinding is selected considering

𝑢upw𝑖,𝑗 = 𝑢𝑖+ 1
2 ,𝑗

+ 𝑢𝑖− 1
2 ,𝑗
, 𝑣upw

𝑖+ 1
2 ,𝑗+

1
2

= (Hz 𝑣)𝑖,𝑗+ 1
2

+ (Hz 𝑣)𝑖+1,𝑗+ 1
2

1.4.4 Pressure gradient

This section is still under redaction. Meanwhile, please refer to Shchepetkin and McWilliams [2003].

1.4.5 Equation of State

Related CPP options:

SALINITY Activate salinity as an active tracer
NONLIN_EOS Activate nonlinear equation of state
SPLIT_EOS

Activate the split of the nonlinear equation of state in
adiabatic
and compressible parts for reduction of pressure
gradient errors

Preselected options:

define SALINITY
define NONLIN_EOS
define SPLIT_EOS

The density is obtained from temperature and salinity (if SALINITY defined) via a choice of linear 𝜌(𝑇) or non-
linear 𝜌(𝑇, 𝑆, 𝑃) equation of state (EOS) described in Shchepetkin and McWilliams [2003]. The nonlinear EOS
corresponds to the UNESCO formulation as derived by Jackett and Mcdougall [1995] that computes in situ density
as a function of potential temperature, salinity and pressure.

To reduce errors of pressure-gradient scheme associated with nonlinearity of compressibility effects, Shchepetkin
and McWilliams [2003] introduced a Taylor expansion of this EOS that splits it into an adiabatic and a linearized
compressible part (SPLIT_EOS):

𝜌 = 𝜌0 + 𝜌1(𝑇, 𝑆) + 𝑞1(𝑇, 𝑆) |𝑧|

where 𝜌1(𝑇, 𝑆) is the sea-water density perturbation at the standard pressure of 1 Atm (sea surface), 𝑞1 is the
compressibility coefficient, and |𝑧| is absolute depth, i.e. the distance from free-surface to the point at which density

30 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

is computed. This splitting of the EOS into two separate contributions allows for the representation of spatial
derivatives of density as the sum of adiabatic derivatives and the compressible part. This makes it straightforward
to remove pressure effects so as to reduce pressure gradient errors, compute neutral directions, enforce stable
stratification, compute Brunt-Väisäla frequency etc.

The Brunt-Väisäla frequency 𝑁 (at horizontal 𝜌 and vertical 𝑤 points) is defined by:

𝑁2 = − 𝑔

𝜌0

𝜕𝜌𝜃
𝜕𝑧

where 𝜌𝜃 is potential density, .i.e., the density that a parcel would acquire if adiabatically brought to depth 𝑧𝑤.

1.4.6 Wetting and Drying

The processes of wetting and drying have important physical and biological impacts on shallow water systems.
Flooding and dewatering effects on coastal mud flats and beaches occur on various time scales ranging from storm
surge, periodic rise and fall of the tide, to infragravity wave motions. To correctly simulate these physical processes
with a numerical model requires the capability of the computational cells to become flooded and dewatered. Warner
et al. [2013] proposed a method for wetting and drying based on an approach consistent with a cell-face blocking
algorithm. The method allows water to always flow into any cell, but prevents outflow from a cell when the total
depth in that cell is less than a user defined critical value. See Warner et al. [2013] for details.

The Wetting-Drying scheme is derived from John Warner’s code (Rutgers ROMS) and adapted to the time stepping
scheme of CROCO. The main idea is to cancel the outgoing momentum flux (not the incoming) from a grid cell if
its total depth is below a threshold value (critical depth Dcrit between 5 and 20 cm according to local slope; Dcrit
min and max adjustable in param.h). This scheme is tested in the Thacker case producing oscillations in a rotating
bowl for which an analytical solution is known.

1.4.7 Non-Boussinesq Solver

CROCO can be used in a Boussinesq hystrostatic mode, or a non-hydrostatic, non-boussinesq mode (NBQ). The
Non-Hydrostatic approach is based on the relaxation of the Boussinesq approximation instead of solving a Poisson
system. It replaces the barotropic mode solver by a fully 3D fast mode solver, resolving all waves down to acoustic
waves. The barotropic mode is part of the fast mode in this case. Depending on the physical problem, the sound
speed can be decreased to the maximum wave velocity one wants to solve. The NH solver can be used in problems
from a few tens of meters to LES or DNS resolutions. It comes with monotonicity preserving advection schemes
(WENO5, TVD) and fully 3D turbulent closure schemes.

Related CPP options (for users):

NBQ Activates Non-hysrostatic, non-Boussinesq solver

1.5 Parametrizations

1.5.1 Vertical mixing parametrizations

CROCO contains a variety of methods for setting the vertical viscous and diffusive coefficients. The choices range
from simply choosing fixed values to the KPP and the generic lengthscale (GLS) turbulence closure schemes. See
Large [1998] for a review of surface ocean mixing schemes. Many schemes have a background molecular value
which is used when the turbulent processes are assumed to be small (such as in the interior).

Related CPP options:

1.5. Parametrizations 31

Croco Documentation, Release 2.0.0

ANA_VMIX Analytical definition
BVF_MIXING Brunt-Vaisaleafrequency based
LMD_MIXING K-profile parametrisation
GLS_MIXING Generic lengthscale parametrisation

Preselected options:

NONE : default is no mixing scheme

1.5.1.1 Analytical definition

Related CPP options:

ANA_VMIX Analytical definition

Preselected options:

NONE

A profile for mixing coeefficient 𝐾𝑚,𝑠(𝑧) can be set in ana_vmix routine for variables Akv (viscosity) and Akt
(diffusivity), which is called at each time step. In this case, background coeeficients read in croco.in can be used.

1.5.1.2 BVF mixing

Related CPP options:

BVF_MIXING Brunt-Vaisala frequency based

Preselected options:

NONE

It computes diffusivity using a Brunt-Vaisala frequency based vertical mixing scheme. Viscosity is set to its back-
ground. In static unstable regime, diffusivity is enhanced.

• If 𝑁2(𝑧) < 0 :

𝐾𝑚,𝑠(𝑧) = 0.1 m2 s−1

• If 𝑁2(𝑧) > 0 :

𝐾𝑚,𝑠(𝑧) = 10−7/
√︀
𝑁2(𝑧), 𝐾min

𝑚,𝑠 ≤ 𝐾𝑚,𝑠(𝑧) ≤ 𝐾max
𝑚,𝑠

Default bounds are quite restrictive :

𝐾min
𝑚,𝑠 = 3× 10−5 m2 s−1, 𝐾max

𝑚,𝑠 = 4× 10−4 m2 s−1

32 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.5.1.3 K-profile parametrization

Large et al. [1994]

Related CPP options:
KPP-related options :

LMD_MIXING K-profile parametrisation
LMD_SKPP Activate surface boundary layer KPP mixing
LMD_SKPP2005 Activate surface boundary layer KPP mixing (2005 version)
LMD_BKPP Activate bottom boundary layer KPP mixing
LMD_BKPP2005 Activate bottom boundary layer KPP mixing (2005 version)
LMD_RIMIX Activate shear instability interior mixing
LMD_CONVEC Activate convection interior mixing
LMD_DDMIX Activate double diffusion interior mixing
LMD_NONLOCAL Activate nonlocal transport for SKPP
LMD_LANGMUIR Activate Langmuir turbulence mixing

Preselected options:

ifdef LMD_MIXING
define LMD_SKPP
define LMD_BKPP
define LMD_RIMIX
define LMD_CONVEC
undef LMD_DDMIX
define LMD_NONLOCAL
undef LMD_LANGMUIR
endif

#if defined LMD_SKPP # define LMD_SKPP2005 #endif #ifdef LMD_BKPP # undef LMD_BKPP2005 #endif

Surface boundary layer
• LMD_SKPP [Large et al., 1994]

– Step 1 : Compute boundary layer depth ℎ𝑏𝑙(𝑧𝑟 → 𝑧𝑁)

Ri𝑏(𝑧) =
𝑔(𝑧𝑟 − 𝑧) (𝜌(𝑧)− 𝜌𝑟) /𝜌0
|u(𝑧)− (uℎ)𝑟|2 + 𝑉 2

𝑡 (𝑧)
, Ri𝑏(−ℎ𝑏𝑙) = Ri𝑐𝑟

– Step 2 : In the stable case math::(B_f > 0) : h_{bl} = min(h_{bl}, h_{ek}, h_{mo})

ℎ𝑒𝑘 = 0.7𝑢⋆/𝑓, ℎ𝑚𝑜 = 𝑢3⋆/(𝜅𝐵𝑓).

– Step 3 : Compute turbulent viscosity and diffusivity

𝐾𝑚,𝑠(𝑧) = 𝑤𝑚,𝑠 ℎ𝑏𝑙 𝐺(𝑧/ℎ𝑏𝑙), 𝑤𝑚,𝑠 = 𝜅 𝑢⋆ 𝜓𝑚,𝑠(𝑧𝐵𝑓/𝑢
3
⋆)

Choice of the critical Richardson number Ri𝑐𝑟 : Ri𝑐𝑟 ∈ [0.15, 0.45]

• LMD_SKPP2005 [Shchepetkin and McWilliams, 2005]

– Criteria for ℎ𝑏𝑙 : integral layer where production of turbulence by shear balances dissipation by the
stratification

Cr(𝑧) =

∫︁ 𝜁

𝑧

𝒦(𝑧′)

{︂
|𝜕𝑧′uℎ|2 −

𝑁2

Ri𝑐𝑟
− 𝐶𝐸𝑘 𝑓2

}︂
𝑑𝑧′ +

𝑉 2
𝑡 (𝑧)

(𝜁 − 𝑧)
, Cr(−ℎ𝑏𝑙) = 0

1.5. Parametrizations 33

Croco Documentation, Release 2.0.0

– Consistent with the original KPP

Cr(−ℎ𝑏𝑙) = 0⇒
(𝜁 − 𝑧)

∫︀ 𝜁
𝑧
𝒦(𝑧′)𝑁2(𝑧′)𝑑𝑧′

(𝜁 − 𝑧)
∫︀ 𝜁
𝑧
𝒦(𝑧′)

{︁
|𝜕𝑧uℎ|2 − 𝐶𝐸𝑘 𝑓2

}︁
𝑑𝑧′ + 𝑉 2

𝑡 (𝑧)
= Ri𝑐𝑟

Advantages :
-> consistent with Ekman problem
-> tends to give deeper boundary layers : (𝜁 − 𝑧)

∫︀ 𝜁
𝑧
|𝜕𝑧′uℎ|2 𝑑𝑧′ ≥ |uℎ(𝑧)− uℎ(𝜁)|2.

• cpp key LMD_LANGMUIR [McWilliams and Sullivan, 2000]

Following the work of McWilliams and Sullivan [2000], we introduce in KPP an enhancement factor E to the
turbulent velocity scale as a function of the turbulent Langmuir number 𝐿𝑎𝑡 =

√︀
𝑢⋆/𝑢𝑆𝑡𝑜𝑘𝑒𝑠, but this function is

taken as in Van Roekel et al. [2012] which gives good results in Li et al. [2016] – still assuming that Stokes drift
is aligned with the surface wind stress:

𝑤𝑚,𝑠 =
𝜅 𝑢⋆
𝜑𝑚,𝑠

𝐸, 𝐸 =

√︁
1 + 0.104𝐿𝑎−2

𝑡 + 0.034𝐿𝑎−4
𝑡

Interior scheme

𝐾𝑚,𝑠(𝑧) = 𝐾sh
𝑚,𝑠(𝑧) +𝐾 iw

𝑚,𝑠(𝑧) +𝐾dd
𝑚,𝑠(𝑧)

• cpp key LMD_RIMIX, RI_(H-V)SMOOTH [Large et al., 1994]

Ri𝑔 = 𝑁2/
[︀
(𝜕𝑧𝑢)2 + (𝜕𝑧𝑣)2

]︀
𝐾sh
𝑚,𝑠(𝑧) =

⎧⎪⎨⎪⎩
𝐾0,𝑐 Ri𝑔 < 0 ← [LMD_CONVEC]

𝐾0

[︁
1− (

Ri𝑔
Ri0

)3
]︁

0 < Ri𝑔 < Ri0

0 Ri0 < Ri𝑔

𝐾0 = 5× 10−3 m2 s−1,Ri0 = 0.7

• cpp key LMD_NUW_GARGETT (Gargett & Holloway)

𝐾 iw
𝑚 (𝑧) =

10−6√︀
max(𝑁2(𝑧), 10−7)

, 𝐾 iw
𝑠 (𝑧) =

10−7√︀
max(𝑁2(𝑧), 10−7)

• cpp key LMD_DDMIX (cf Large et al. [1994], eqns (31))

Bottom boundary layer
• cpp key LMD_BOTEK : Bottom Ekman layer

ℎEk = min

{︂
0.3𝑢⋆,𝑏
|𝑓 |

, ℎ

}︂
𝜎𝑘+ 1

2
= (𝑧𝑘+ 1

2
− ℎ)/ℎEk

𝐾Ek
𝑘+ 1

2
= max {4 𝜅 𝑢⋆,𝑏 ℎEk 𝜎(1− 𝜎),𝐾min}

AKv𝑘+ 1
2

= AKv𝑘+ 1
2

+𝐾Ek
𝑘+ 1

2

AKt𝑘+ 1
2

= AKt𝑘+ 1
2

+𝐾Ek
𝑘+ 1

2

• cpp key LMD_BKPP (Bottom KPP 1994)

Same rationale than surface KPP but this time we search for the critical value Ricr (≈ 0.3) starting from the bottom

ℎbbl = min

(︂
ℎbbl,

0.7𝑢⋆,𝑏
|𝑓 |

)︂
𝐾𝑚,𝑠(𝑧) = 𝜅 𝑢⋆,𝑏 ℎ𝑏𝑏𝑙 𝐺(𝜎), 𝜎 =

(𝑧 − ℎ)

ℎ𝑏𝑏𝑙

34 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.5.1.4 Generic length scale

GLS-related options :

GLS_MIXING Activate Generic Length Scale scheme, default is k-epsilon (see below)
GLS_KOMEGA Activate K-OMEGA (OMEGA=frequency of TKE dissipation) originating from Kol-

mogorov [1942]
GLS_KEPSILON Activate K-EPSILON (EPSILON=TKE dissipation) as in Jones and Launder [1972]
GLS_GEN Activate generic model of Umlauf and Burchard [2003]
CANUTO_A Option for CANUTO A stability function (default, see below)
GibLau_78 Option for Gibson and Launder [1978] stability function
MelYam_82 Option for Mellor and Yamada [1982] stability function
KanCla_94 Option for Kantha and Clayson [1994] stability function
Luyten_96 Option for Luyten [1996] stability function
CANUTO_B Option for CANUTO B stability function
Cheng_02 Option for Cheng et al. [2002] stability function

Preselected options for GLS:

#ifdef GLS_MIXING
if defined GLS_KOMEGA
elif defined GLS_KEPSILON
elif defined GLS_GEN
else
define GLS_KEPSILON
endif
if defined CANUTO_A
elif defined GibLau_78
elif defined MelYam_82
elif defined KanCla_94
elif defined Luyten_96
elif defined CANUTO_B
elif defined Cheng_02
else
define CANUTO_A
endif
#endif

The objective of this section is to describe the current implementation of a Generic Length Scale (GLS) turbulence
scheme in CROCO that computes the turbulent viscosity 𝐾𝑚 and diffusivity 𝐾𝑠. First of all, as usually done
in most implementations, the assumption of an horizontally homogeneous flow is made. Following Umlauf and
Burchard [2003], the equations satisfied by the two prognostic variables 𝑘 (the kinetic energy) and 𝜓 (the generic
length scale) are

𝜕𝑡𝑘 = 𝜕𝑧(𝐾𝑘𝜕𝑧𝑘) + 𝑃 +𝐵 − 𝜀, 𝐾𝑘 = 𝐾𝑚/Sc𝑘

𝜕𝑡𝜓 = 𝜕𝑧(𝐾𝜓𝜕𝑧𝜓) + 𝜓𝑘−1
(︀
𝛽1𝑃 + 𝛽±

3 𝐵 − 𝛽2𝜀
)︀
, 𝐾𝜓 = 𝐾𝑚/Sc𝜓

where the 𝛽𝑗 (j=1,3) are constants to be defined, 𝑃 represents the TKE production by vertical shear 𝑃 =
𝐾𝑚

[︀
(𝜕𝑧𝑢)2 + (𝜕𝑧𝑣)2

]︀
and𝐵 the TKE destruction by stratification𝐵 = −𝐾𝑠𝑁

2 (with𝑁2 the local Brunt-Vaisala
frequency). The dissipation rate 𝜀 is related to the generic length scale 𝜓 following

𝜀 = (𝑐0𝜇)3+𝑝/𝑛𝑘3/2+𝑚/𝑛𝜓−1/𝑛, 𝜓 = (𝑐0𝜇)𝑝𝑘𝑚𝑙𝑛, 𝑙 = (𝑐0𝜇)3𝑘3/2𝜀−1

with 𝑙 a mixing length and 𝑐0𝜇 a constant (whose value is between 0.526 and 0.555) to be defined. Depending on
the parameter values for the triplet (𝑚,𝑛, 𝑝) the GLS scheme will either correspond to a 𝑘 − 𝜀, a 𝑘 − 𝜔 or the
so-called generic [Umlauf and Burchard, 2003] turbulence scheme (to simplify the code and because this scheme
do not generally outperform other schemes, the possibility to use the so-called 𝑘-𝑘𝑙 scheme is not implemented
in Croco). Since the equations for 𝑒 and 𝜓 bear lots of similarities, to avoid excessive code duplication, a unique

1.5. Parametrizations 35

Croco Documentation, Release 2.0.0

equation is solved for a quantity 𝒯𝑖 encompassing 𝑘 (when 𝑖 = 𝑖tke) and 𝜓 (when 𝑖 = 𝑖gls, 𝑖gls = 𝑖tke + 1) such
that

𝜕𝑡𝒯𝑖 = 𝜕𝑧(𝐾𝒯𝑖𝜕𝑧𝒯𝑖) + (𝑐1𝑖𝑃 + 𝑐3,±𝑖 𝐵 − 𝑐2𝑖 𝜀), 𝐾𝒯𝑖 = 𝐾𝑚/Sc𝒯𝑖

where

Sc𝒯𝑖tke
= Sc𝑘, Sc𝒯𝑖gls

= Sc𝜓

and

𝑐1𝑖 = (𝑖gls − 𝑖) + (𝑖− 𝑖tke)𝛽1𝑒−1𝜓

𝑐2𝑖 = (𝑖gls − 𝑖) + (𝑖− 𝑖tke)𝛽2𝑒−1𝜓

𝑐3,±𝑖 = (𝑖gls − 𝑖) + (𝑖− 𝑖tke)𝛽±
3 𝑒

−1𝜓

In practice this explains why in the code the two prognostic quantities 𝑘 and 𝜓 are stored in a single array
trb(i, j, k,ntime,ngls) avec ngls = 2, 𝑖tke = 1 and 𝑖gls = 2. Once the quantities 𝑘 and 𝜓 (hence 𝜀) are known,
the turbulent viscosity/diffusivity are given by

𝐾𝑚 = 𝑐𝜇

(︂
𝑘2

𝜀

)︂
=

𝑐𝜇
(𝑐0𝜇)3

(𝑙
√
𝑘), 𝐾𝑠 = 𝑐

′

𝜇

(︂
𝑘2

𝜀

)︂
=

𝑐
′

𝜇

(𝑐0𝜇)3
(𝑙
√
𝑘).

where 𝑐𝜇 and 𝑐′𝜇 are determined through so-called stability functions (see below).

Choice of parameter values and stability functions
A particular GLS occurence is defined by the following parameters :

• The exponents (𝑚,𝑛, 𝑝) in the definition of 𝜀

• The Schmidt numbers Sc𝑘 and Sc𝜓

• The coefficients 𝛽𝑗 (j=1,3)

• The constant 𝑐0𝜇
• The stability functions which are generally function of

𝛼𝑀 =

(︂
𝑘

𝜀

)︂2 [︀
(𝜕𝑧𝑢)2 + (𝜕𝑧𝑣)2

]︀
, 𝛼𝑁 =

(︂
𝑘

𝜀

)︂2

𝑁2

Where (𝑚,𝑛, 𝑝), Sc𝑘, Sc𝜓 , 𝛽𝑗 (j=1,3) are tied to a particular choice of GLS scheme (see table below) while 𝑐0𝜇, 𝑐𝜇
and 𝑐′𝜇 are tied to a particular choice of stability function. The formulation of numerous stability functions can be
reconciled when written using the generic form

𝑐𝜇 =
𝑛0 + 𝑛1𝛼𝑁 + 𝑛2𝛼𝑀

𝑑0 + 𝑑1𝛼𝑁 + 𝑑2𝛼𝑀 + 𝑑3𝛼𝑁𝛼𝑀 + 𝑑4𝛼2
𝑁 + 𝑑5𝛼2

𝑀

𝑐
′

𝜇 =
𝑛

′

0 + 𝑛
′

1𝛼𝑁 + 𝑛
′

2𝛼𝑀
𝑑0 + 𝑑1𝛼𝑁 + 𝑑2𝛼𝑀 + 𝑑3𝛼𝑁𝛼𝑀 + 𝑑4𝛼2

𝑁 + 𝑑5𝛼2
𝑀

where a given choice of stability function will define the parameter values for 𝑛𝑖, 𝑑𝑗 , and 𝑛′

𝑘. In Croco, 7 options
are available, these are referred to CANUTO-A, CANUTO-B, Gibson and Launder [1978], Mellor and Yamada
[1982], Kantha and Clayson [1994], Luyten [1996], Cheng et al. [2002].

Table 1: Table: parameter values corresponding to each particular GLS
model

GLS model 𝑚 𝑛 𝑝 𝛽1 𝛽2 𝛽−
3 𝛽+

3 Sc𝑒 Sc𝜓

𝑘 − 𝜔 0.5 -1 -1 0.555 0.833 -0.6 1 0.5 0.5
𝑘 − 𝜀 1.5 -1 3 1.44 1.92 -0.4 1 1 0.7692
Gen 1 -0.67 0 1 1.22 0.05 1 1.25 0.9345

The quantities 𝛼𝑁 and 𝛼𝑀 in the formulation of 𝑐𝜇 and 𝑐′𝜇 must satisfy some constraints to guarantee the regularity
of numerical solutions. In CROCO, the following steps are done:

36 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1. Apply the Galperin et al. [1988] limitation i.e. 𝑙 ≤ 𝑙lim = 𝛽galp
√︀

2𝑘/𝑁2 on 𝜓 with 𝛽galp = 0.53. The
first step is to use this mixing length 𝑙lim to compute 𝜓min = (𝑐0𝜇)𝑝𝑘𝑚(𝑙lim)𝑛 and to correct 𝜓 to satisfy the
constraint

𝜓 = max (𝜓,𝜓min)

here the max function is used since the exponent 𝑛 is negative whatever the GLS scheme.

2. Compute the dissipation rate 𝜀 = (𝑐0𝜇)3+𝑝/𝑛𝑘3/2+𝑚/𝑛𝜓−1/𝑛 and correct it

𝜀 = max (𝜀, 𝜀min) , 𝜀min = 10−12 m2 s−3

3. Compute 𝛼𝑁 and 𝛼𝑀 , and apply “stability and realisability” constraints following Umlauf and Burchard
[2003] (their Sec. 4). A first constraint applies on 𝛼𝑁 to ensure that −𝜕𝛼𝑁

(𝑐
′

𝜇/𝛼𝑁) > 0 to prevent the
occurence of oscillations in 𝑐′𝜇. This translates into the following limiter

𝛼min
𝑁 =

−(𝑑1 + 𝑛
′

0) +
√︀

(𝑑1 + 𝑛
′
0)2 − 4𝑑0(𝑑4 + 𝑛

′
1)

2(𝑑4 + 𝑛
′
1)

, 𝛼𝑁 = min
(︀
max(0.73𝛼min

𝑁), 1010
)︀

where the coefficient 0.73 is used to ensure the so-called realisability and has been empirically computed
thanks to Table 3 in Umlauf and Burchard [2003] in order to satisfy their constraint (48). Then an upper
limit is applied on 𝛼𝑀 to ensure that 𝜕𝛼𝑀

(𝑐𝜇
√
𝛼𝑀) ≥ 0 which is also a prerequisite for stability reasons

𝛼max
𝑀 =

𝑑0𝑛0 + (𝑑0𝑛1 + 𝑑1𝑛0)𝛼𝑁 + (𝑑1𝑛1 + 𝑑4𝑛0)𝛼2
𝑁 + 𝑑4𝑛1𝛼

3
𝑁

𝑑2𝑛0 + (𝑑2𝑛1 + 𝑑3𝑛0)𝛼𝑁 + (𝑑3𝑛1)𝛼2
𝑁

, 𝛼𝑀 = min (𝛼𝑀 , 𝛼
max
𝑀)

Once those quantities are computed, stability functions are evaluated as well as the turbulent viscos-
ity/diffusivity.

Surface and bottom boundary conditions
In current version of Croco, both 𝑘 and 𝜓 are formulated with Neumann boundary conditions at the top and at the
bottom. However the nature of those boundary conditions also requires the determination of bottom and surface
values for 𝑘 and 𝜓.

• For turbulent kinetic energy, the “diagnostic” surface and bottom values are given by

𝑘sfc = (𝑢𝑠⋆/𝑐
0
𝜇)2, 𝑘bot = (𝑢𝑏⋆/𝑐

0
𝜇)2

and simple homogeneous Neumann boundary conditions are applied

𝐾𝑘𝜕𝑧𝑘|sfc = 0, 𝐾𝑘𝜕𝑧𝑘|bot = 0

In practice, due to the placement of 𝑘 and 𝜓 on the computational grid, the Neumann boundary condition
is not applied strictly at the surface (resp. at the bottom) but at 𝑧 = 𝑧𝑁 (resp. 𝑧 = 𝑧1) whereas the surface
(resp. bottom) is located at 𝑧 = 𝑧𝑁+1/2 (resp. 𝑧 = 𝑧1/2) with 𝑁 the number of vertical levels (i.e. the
number of cells in the vertical).

• For the generic length scale, a roughness is defined as

𝑧0,𝑠 = max

{︂
10−2 m,

𝐶ch

𝑔
(𝑢𝑠⋆)

2

}︂
, 𝐶ch = 1400

at the surface and

𝑧0,𝑏 = max
{︀

10−4 m,Zob
}︀

at the bottom with Zob a user defined roughness length (usually Zob = 10−2 m).

Again, the boundary conditions are applied at the center of the shallowest and deepest grid cells and not at their
interfaces which means that the relevant length scales are

𝐿sfc = 𝜅

(︂
𝛥𝑧𝑁

2
+ 𝑧0,𝑠

)︂
, 𝐿bot = 𝜅

(︂
𝛥𝑧1

2
+ 𝑧0,𝑏

)︂

1.5. Parametrizations 37

Croco Documentation, Release 2.0.0

with 𝜅 the von Karman constant. Moreover TKE values are interpolated at 𝑧 = 𝑧𝑁 and 𝑧 = 𝑧1

̃︀𝑘sfc =
1

2

(︀
𝑘sfc + 𝑘N−1/2

)︀
, ̃︀𝑘bot =

1

2

(︀
𝑘bot + 𝑘3/2

)︀
where 𝑘sfc and 𝑘bot are the diagnostic values given above.

The “diagnostic” surface and bottom values for 𝜓 are thus given by

𝜓sfc = (𝑐0𝜇)𝑝(𝐿sfc)
𝑛(̃︀𝑘sfc)𝑚, 𝜓bot = (𝑐0𝜇)𝑝(𝐿bot)

𝑛(̃︀𝑘bot)𝑚
Then the surface and bottom flux are defined as

ℱ sfc
𝜓 = 𝐾𝜓𝜕𝑧𝜓|sfc = −𝑛(𝑐0𝜇)𝑝+1 𝜅

Sc𝜓
(̃︀𝑘sfc)𝑚+1/2(𝐿sfc)

𝑛

ℱbot
𝜓 = 𝐾𝜓𝜕𝑧𝜓|bot = −𝑛(𝑐0𝜇)𝑝+1 𝜅

Sc𝜓
(̃︀𝑘bot)𝑚+1/2(𝐿bot)

𝑛

which correspond to the Neumann boundary conditions applied in the code.

1.5.2 Horizontal diffusion

1.5.2.1 Lateral Momentum Mixing

Related CPP options:

UV_MIX_GEO Activate mixing on geopotential (constant depth) sur-
faces

UV_MIX_S Activate mixing on iso-sigma (constant sigma) sur-
faces

UV_VIS2 Activate Laplacian horizontal mixing of momentum
UV_VIS4 Activate Bilaplacian horizontal mixing of momentum
UV_VIS_SMAGO

Activate Smagorinsky parametrization of turbulent
viscosity
(only with UV_VIS2)

UV_VIS_SMAGO3D Activate 3D Smagorinsky parametrization of turbulent
viscosity

Preslected options:

ifdef UV_VIS2
define UV_MIX_S
define UV_VIS_SMAGO
endif

#ifdef UV_VIS_SMAGO
define VIS_COEF_3D
#endif

ifdef UV_MIX_S
elif defined UV_MIX_GEO
else
define UV_MIX_S /* Default*/
endif# undef UV_HADV_TVD

Explicit lateral momentum mixing may be only useful when implicit dissipation in UV_HADV_UP3 is not large
enough to account for subgrid-scale turbulence resulting from large shear currents (for example in the case of
western boundary currents). In this case, Smagorinsky parametrization is recommended (define UV_VIS2 below).

38 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.5.2.2 Lateral Tracer Mixing

Related CPP options:

TS_MIX_ISO Activate mixing along isopycnal (isoneutral) surfaces
TS_MIX_GEO Activate mixing along geopotential surfaces
TS_MIX_S Activate mixing along iso-sigma surfaces
TS_DIF2 Activate Laplacian horizontal mixing of tracer
TS_DIF4 Activate Bilaplacian horizontal mixing of tracer
TS_MIX_IMP

Activate stabilizing correction of rotated diffusion
(used with TS_MIX_ISO and TS_MIX_GEO)

Preslected options:

#ifdef TS_HADV_RSUP3 /* Rotated-Split 3rd-order scheme is: */
define TS_HADV_C4 /* 4th-order centered advection */
define TS_DIF4 /* + Hyperdiffusion */
define TS_MIX_GEO /* rotated along geopotential surfaces */
define TS_MIX_IMP /* with Semi-Implicit Time-Stepping */
define DIF_COEF_3D
#endif

These options are preselected in set_global_definitions.h for compliance with Advection options.

1.5.3 Bottom friction

Related CPP options:

LIMIT_BSTRESS Bottom stress limitation forstability
BSTRESS_FAST Bottom stress computed in step3d_fast
BBL Bottom boundary layer parametrization

Specification in croco.in:

bottom_drag: RDRG [m/s], RDRG2, Zob [m], Cdb_min, Cdb_max
3.0d-04 0.d-3 0.d-3 1.d-4 1.d-1

• General form for 3D equations (cf get_vbc.F) :

– If 𝑧0,𝑏 ̸= 0 → quadratic friction with log-layer (𝐶𝑑,min ≤ 𝐶𝑑 ≤ 𝐶𝑑,max)

𝜏 𝑏 = 𝐶𝑑‖u𝑘=1‖u𝑘=1, 𝐶𝑑 =

(︂
𝜅

ln ([𝑧1 −𝐻]/𝑧0,𝑏])

)︂2

– If 𝑟drg2 > 0 → quadratic friction with 𝐶𝑑 = constant}

𝜏 𝑏 = 𝑟drg2‖u𝑘=1‖u𝑘=1,

– Otherwise → linear friction

1.5. Parametrizations 39

Croco Documentation, Release 2.0.0

𝜏 𝑏 = 𝑟drgu𝑘=1,

• In the barotropic mode (cf step2D.F) :

𝜏 2d
𝑏 = (𝑟drg + 𝑟drg2‖ū‖)ū

to be continued here for BSTRESS_FAST and BBL . . .

BBL parametrization is detailed in the Sediment and Biology models section of the Doc.

1.6 Parallelisation

CROCO has been designed to be optimized on both shared and distributed memory parallel computer architectures.
Parallelization is done by two dimensional sub-domains partitioning. Multiple sub-domains can be assigned to
each processor in order to optimize the use of processor cache memory. This allow super-linear scaling when
performance growth even faster than the number of CPUs.

Related CPP options:

OPENMP Activate OpenMP parallelization protocol
MPI Activate MPI parallelization protocol
OPENACC Activate GPU computation protocol
MPI_NOLAND No computation on land only CPUs (needs preprocessing)
AUTO_TILING Compute the best decomposition for OpenMP
PARALLEL_FILES Output one file per CPU
NC4_PAR Use NetCDF4 capabilities
XIOS Dedicated CPU for output (needs XIOS installed)

Preselected options:

undef MPI
undef OPENMP
undef MPI_NOLAND
undef AUTOTILING
undef PARALLEL_FILES
undef NC4_PAR
undef XIOS

1.6.1 Parallel strategy overview

Two kinds of parallelism are currently supported by CROCO: MPI (distributed memory) or OpenMP (shared
memory).

CROCO doesn’t currently support MPI+OpenMP hybrid parallelisation: use of cpp keys MPI or OPENMP is
exclusive.

40 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.6.1.1 OpenMP (#define OPENMP)

Variables in param.h:
• NPP: a number of threads

• NSUB_X: number of tiles in XI direction

• NSUB_E: number of threads in ETA direction

NSUB_X x NSUB_E has to be a multiple of NPP. Most of the time, we set NPP=NSUB_X*NSUB_E

Example 1:
One node with 8 cores: NPP=8, NSUB_X=2, NSUB_E=4

Each thread computes one sub-domain.

Example 2:
Still one node with 8 cores: NPP=8, NSUB_X=2, NSUB_E=8

Each thread computes two sub-domains.

1.6. Parallelisation 41

Croco Documentation, Release 2.0.0

Code structure
• OpenMP is NOT implemented at loop level

• but uses a domain decomposition (similar to MPI) with parallel region

• use of First touch initialisation so working arrays are attached to the same thread

• working arrays have the size of the sub-domain only

Fig. 6: Example of a parallel region

Fig. 7: Inside a parallel region

Here Compute_1 and Compute2 can’t write on the same index of a global array.

1.6.1.2 MPI (#define MPI)

Variables in param.h:
• NP_XI: decompostion in XI direction

• NP_ETA: decomposition in ETA direction

• NNODES: number of cores (=``NP_XI*NP_ETA``, except with MPI_NOLAND)

• NPP = 1

• NSUB_X and NSUB_ETA, number of sub-tiles (almost always =1)

42 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Example 1:
8 cores:

• NP_XI=2, NP_ETA=4, NNODES=8

• NPP=1, NSUB_X=1, NSUB_E=1

Example 2:
8 cores:

• NP_XI=2, NP_ETA=4, NNODES=8

• NPP=1, NSUB_X=1, NSUB_ETA=2

1.6.2 Variable placement for staggered grids

We are working on a staggered grid.

For the barotropic solver, there are 3 different grid points where the variables are stored:

• RHO: This variable is “centered” at each grid cell.

• U: This variable is at the left/right edge of the grid cell.

• V: This variable is at the top/bottom edge of the grid cell

1.6.3 Loops and indexes for staggered grids

1.6.3.1 Parallel/sequential correspondence:

The top image depicts a decomposition of the domain into 2 sub-domains.

The bottom image shows the indices for the total (sequential) domain.

1.6. Parallelisation 43

Croco Documentation, Release 2.0.0

1.6.3.2 Decomposition:

Example : 2 MPI domains, with 2 sub-domains for each MPI rank (with or without OpenMP)

Istr, Iend are the limits of the sub-domains (without overlap). They are calculated at the beginning of the sub-
routine by including

Computation of Istr, Iend and use of working arrays.

44 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.6.4 Halo layer exchanges

CROCO makes use 2 or 3 ghost cells depending on the chosen numerical schemes.

In the example above (2 ghosts cells), for correct exchanges, after computation:

• 𝜂 has to be valid on (1:Iend)

• 𝑢 has to be valid on (1:Iend) except on the left domain (2:Iend)

IstrU is the lower limit of validity of the U points.

Computation of auxiliary indexes is done by including a file:

subroutine step2D_FB_tile (Istr, Iend, Jstr, Jend, zeta_new, ...
...
#include "compute_auxiliary_bounds.h" ! Compute IstrU, IstrR

1.6.5 Dealing with outputs

By default, with MPI activated input and output files are treated in a pseudo-sequential way, and one NetCDFfile
corresponds to the whole domain. This has drawbacks when using a large number of computational cores, since
each core is writing its part of the domain sequentially, the time dedicated to outputs increase with the number of
cores. Three alternatives are implemented within CROCO.

Splited files (#define PARALLEL_FILES)
In this case, each core is writing its part only of the domain in separated files (one per MPI domain). This writing
is performed concurrently. One other advantage is to avoid the creation of huge output files. The domain related
output files can be recombined using ncjoin utility (in fortran) compiled in the same time than CROCO. Note that
in this case, input files have to be splited as well, using partit utility.

Parallel NetCDF(#define NC4PAR)
This option requires NetcDF4 verion, installed with parallel capabilities. All cores are writing concurrently but in
the same time.

IO server (#define XIOS)
XIOS is an external IO server interfaced with CROCO. Informations about use and installation can be found there
https://forge.ipsl.jussieu.fr/ioserver. In this case, output variables are defined in .xml files. See also the Diagnostics
chapter.

1.6. Parallelisation 45

https://forge.ipsl.jussieu.fr/ioserver

Croco Documentation, Release 2.0.0

1.6.6 Run with GPU

• OpenACC directive-based approach is the most appropriate method to develop the GPU version of croco.
Low development cost, a single program repository can be shared by CPU and GPU. Similar to OpenMP
style which is familiar to many users. An openacc compiler compatible is necessary : only nvfortran, and
old pgi have been tested.

• To run croco on GPUs, the key OPENACC as to be set in the cppdefs.h file. With MPI, all the mpi process
are dispatch over the GPUs. Effiency is better with one or two mpi by GPU card.

#define OPENACC

1.6.6.1 General implementation

Implementation is done by inserting basic OpenACC directives :

• Kernels or parallel directives : Basically, inserted into the outermost of nested loops

• Loop independent/seq directives : Inserted according to the loop algorithms

No quantitative configurations for GPU threads are specified. Gang or vector clauses are not applied, leaving it to
the compiler’s decision.

Exemple from pre_step3.F

!$acc kernels if(compute_on_device) default(present)
!$acc end kernels
!$acc parallel loop if(compute_on_device) default(present)

1.6.6.2 Data directives

Remove redundant data transfer between CPU and GPU. There is one main copy data to device, on copy-back
before output. The file copy_to_devices.h do this job.

Python script common2device.py generate the file copy_to_devices.h and have to be rerun when *.h files are
modified.

1.6.6.3 3D loop tunning with preprocessing by compilation

For GPU efficiency some 3D loops have to be reordered or variable expand. This is done by en additional pre-
procesing (in python). And it’s added in jobcomp compilation procedure. Two kind of transformations, first one
transforms 2D variables internal to loops in 3D variables. Second restructures loop with z dependencies.

Example 1:

if defined OPENACC
DOEXTEND(k,1,N,FX,FE,WORK)

endif
... FX(i,j) will become FX_3D(i,j,k) (FE_3D, WORK_3D)
if defined OPENACC

ENDDOEXTEND
endif

Example 2:

DOLOOP2D(Istr,Iend,Jstr,Jend)
do k=1,N
do i=Istr,Iend

(continues on next page)

46 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

(continued from previous page)

DC(i,k)=1./Hz_half(i,j,k)
enddo

enddo
...

ENDDOLOOP2D

Become in CPU version:

!$acc kernels if(compute_on_device) default(present)
!$acc loop private(DC, FC, CF)

do j=Jstr,Jend
do k=1,N
do i=Istr,Iend

DC(i,k)=1.D0/Hz_half(i,j,k)
enddo

enddo
do i=Istr,Iend

DC(i,0)=cdt*pn(i,j)*pm(i,j)
enddo
...
enddo

And become in GPU version :

!$acc kernels if(compute_on_device) default(present)
DO j=Jstr,Jend

!$acc loop private(DC1D,CF1D,FC1D) vector
DO i=Istr,Iend
do k=1,N

DC1D(k)=1.D0/Hz_half(i,j,k)
enddo

DC1D(0)=cdt*pn(i,j)*pm(i,j)
ENDDO
...

ENDDO

1.7 Atmospheric Surface Boundary Layer

Related CPP options:

1.7. Atmospheric Surface Boundary Layer 47

Croco Documentation, Release 2.0.0

BULK_FLUX Activate bulk formulation for surface turbulent fluxes
(by default, COARE3p0 parametrization is used)

BULK_ECUMEV0 Use ECUMEv0 bulk formulation instead of
COARE3p0 formulation

BULK_ECUMEV6 Use ECUMEv6 bulk formulation instead of
COARE3p0 formulation

BULK_WASP Use WASP bulk formulation instead of COARE3p0
formulation

BULK_GUSTINESS Add in gustiness effect on the surface wind module.
Can be used for both bulk parametrizations.

BULK_LW Add in long-wave radiation feedback from model SST
SFLUX_CFB Activate current feedback on . . . [Renault et al., 2020]
CFB_STRESS

. . . surface stress (used by default when
SFLUX_CFB is defined)

CFB_WIND_TRA

. . . surface tracers (used by default when
SFLUX_CFB is defined)

SST_SKIN Activate skin sst computation [Zeng and Beljaars,
2005]

ONLINE

Read native files and perform online interpolation on
CROCO
grid (default cubic interpolation)

QCORRECTION Activate heat flux correction around model SST (if
BULK_FLUX is undefined)

SFLX_CORR Activate freshwater flux correction around model SSS
(if BULK_FLUX is undefined)

ANA_DIURNAL_SW

Activate analytical diurnal modulation of short wave
radiations
(only appropriate if there is no diurnal cycle in data)

By default COARE3p0 parametrization is used with GUSTINESS effects. To change bulk parametrization, one
has to define one of the following cpp keys (not additional) :

• define BULK_ECUMEV0 to use ECUME_v0 parametrization

• define BULK_ECUMEV6 to use ECUME_v6 parametrization

• define BULK_WASP to use WASP parametrization

Warning : it is possible to add GUSTINESS effects for all parametrizations by defining BULK_GUSTINESS cpp
key

ONLINE CPP options:
ONLINE option is an alternative to pre-processing of surface forcing data, that can be useful for long-term
simulations, especially if handling multiple configurations. ONLINE option calls for CUBIC_INTERP in
set_global_definitions.h.

48 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

ECMWF Use ECMWF atm fluxes
AROME Use METEO FRANCE fluxes
READ_PATM

Read atmospheric pressure instead of using default
reference pressure
and take into account the atmospherical pressure
gradient in the equations

OBC_PATM

In the case of READ_PATM, inverse barometer
effect to the open boundaries if
the atmospherical pressure is read in the meteo file.

Preselected options (cppdefs.h):

undef BULK_FLUX
ifdef BULK_FLUX
undef BULK_ECUMEV0
undef BULK_ECUMEV6
undef BULK_WASP
define BULK_GUSTINESS
define BULK_LW
undef SST_SKIN
undef ANA_DIURNAL_SW
undef ONLINE
ifdef ONLINE
undef AROME
undef ERA_ECMWF
endif
undef READ_PATM
ifdef READ_PATM
define OBC_PATM
endif
else
define QCORRECTION
define SFLX_CORR
undef SFLX_CORR_COEF
define ANA_DIURNAL_SW
endif
undef SFLUX_CFB
undef SEA_ICE_NOFLUX

Preselected options (cppdefs_dev.h):

#ifdef BULK_FLUX
ifdef ONLINE
define CUBIC_INTERP
endif
ifdef BULK_ECUMEV0
define BULK_GUSTINESS
elif defined BULK_ECUMEV6
define BULK_GUSTINESS
elif defined BULK_WASP
define BULK_GUSTINESS

(continues on next page)

1.7. Atmospheric Surface Boundary Layer 49

Croco Documentation, Release 2.0.0

(continued from previous page)

endif
#endif

#ifdef SFLUX_CFB
ifdef BULK_FLUX
define CFB_STRESS
define CFB_WIND_TRA
else
undef CFB_STRESS
undef CFB_WIND_TRA
endif
#endif

1.8 Open boundaries conditions

If a lateral boundary faces the open ocean, robust open boundary conditions (OBCs) are needed [Marchesiello et
al., 2001]. Forcing of tracer and baroclinic flow is applied via an adaptive radiation condition, which helps per-
turbations to leave the domain with only a small effect on the interior solution. The same method can be applied
to the depth-averaged flow, but (for tidal forcing in particular) we generally prefer the incoming characteristic of
the shallow water system as in Flather-type conditions [Marchesiello et al., 2001, Blayo and Debreu, 2005]. This
allows long-wave data to be forced in, while those generated inside the domain can leave it, which also guaran-
tees the quasi-conservation of mass and energy across the open boundary. A Sponge layer is added near the open
boundaries to limit small-scale effects and ease the transition between the interior solution and the boundary data.
The boundary data can be applied only at the boundary (see BRY strategy below) or in a nudging layer (CLIMA-
TOLOGY strategy).

This set of OBCs are given as default if no other choice is made. They have performed well in most applications,
from the deep ocean to the coastal areas. For details, refer to Marchesiello et al. [2001] and Blayo and Debreu
[2005].

1.8.1 OBC

Related CPP options:

OBC_EAST Open eastern boundary
OBC_WEST Open western boundary
OBC_SOUTH Open southern boundary
OBC_NORTH Open northern boundary

Related CPP options:

OBC_M2SPECIFIED Activate specified OBCs for barotropic velocities
OBC_M2CHARACT Activate OBCs from characteristic methods for barotropic velocities (default)
OBC_M2ORLANSKI Activate radiative OBCs for barotropic velocities
OBC_VOLCONS Enforce mass conservation at open boundaries (with OBC_M2ORLANSKI)
OBC_M3SPECIFIED Activate specified OBCs for baroclinic velocities
OBC_M3ORLANSKI Activate radiative OBCs for baroclinic velocities (default)
OBC_TSPECIFIED Activate specified OBCs for tracers
OBC_TORLANSKI Activate radiative OBCs for tracers (default)
OBC_TUPWIND Activate upwind OBCs for tracers

For non-tidal forcing, the combination of OBC_M2ORLANSKI and OBC_VOLCONS often provides the best

50 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

performances in terms of transparency of barotropic flow at the open boundaries. However, OBC_M2CHARACT
is near as good and also provides the best conditions for tidal forcing. It is therefore set as default in cppdefs_dev.h.

Preselected options (in cppdefs_dev.h but set your own choice in cppdefs.h if needed):

undef OBC_M2SPECIFIED
define OBC_M2CHARACT
undef OBC_M2ORLANSKI
ifdef OBC_M2ORLANSKI
define OBC_VOLCONS
endif
define OBC_M3ORLANSKI
define OBC_TORLANSKI
undef OBC_M3SPECIFIED
undef OBC_TSPECIFIED

1.8.2 Sponge Layer

SPONGE is preselected in cppdefs.h and calls for SPONGE_GRID in cppdefs_dev.h. SPONGE_GRID selects the
sponge layer extension (10 points with cosine shape function) and viscosity and diffusivity values according to the
horizontal resolution (limited by the CFL stability conditions).

Related CPP options:

SPONGE Activate areas of enhanced viscosity and diffusivity near lateral open boundaries.
SPONGE_GRID Automatic setting of the sponge width and value
SPONGE_DIF2 Sponge on tracers (default)
SPONGE_VIS2 Sponge on momentum (default)
SPONGE_SED Sponge on sediment (default)

1.8.3 Nudging layers

The nudging layer has the same extension as the sponge layer. In nudging layers, tracer and momentum fields are
nudged towards climatological values at a time scale Tau_out (possibly different for momentum and tracers) that
is given in namelist croco.in

Related CPP options:

ZNUDGING Activate nudging layer for sea level
M2NUDGING Activate nudging layer for barotropic velocities
M3NUDGING Activate nudging layer for baroclinic velocities
TNUDGING Activate nudging layer for tracers
ROBUST_DIAG Activate nudging over the whole domain

1.8.4 Lateral forcing

1.8.4.1 CLIMATOLOGY strategy

Related CPP options:

1.8. Open boundaries conditions 51

Croco Documentation, Release 2.0.0

CLIMATOLOGY

Activate processing of 2D/3D data (climatological or
simulation/reanalysis) used as forcing

at the open boundary points + nudging layers

ZCLIMATOLOGY Activate processing of sea level
M2CLIMATOLOGY Activate processing of barotropic velocities
M3CLIMATOLOGY Activate processing of baroclinic velocities
TCLIMATOLOGY Activate processing of tracers

1.8.4.2 BRY strategy

FRC_BRY is useful for inter-annual forcing on high-resolution domains. FRC_BRY is compatible with CLIMA-
TOLOGY that can still be used for nudging layers.

Related CPP options:

FRC_BRY

Activate processing of 1D/2D data used as forcing
at open boundary points strictly

Z_FRC_BRY Activate open boundary forcing for sea level
M2_FRC_BRY Activate open boundary forcing for barotropic veloci-

ties
M3_FRC_BRY Activate open boundary forcing for baroclinic veloci-

ties
T_FRC_BRY Activate open boundary forcing for tracers

Preselected options (cppdefs.h):

define CLIMATOLOGY
ifdef CLIMATOLOGY
define ZCLIMATOLOGY
define M2CLIMATOLOGY
define M3CLIMATOLOGY
define TCLIMATOLOGY
define ZNUDGING
define M2NUDGING
define M3NUDGING
define TNUDGING
undef ROBUST_DIAG
endif
undef FRC_BRY
ifdef FRC_BRY
define Z_FRC_BRY
define M2_FRC_BRY
define M3_FRC_BRY
define T_FRC_BRY
endif

52 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.9 Rivers

Related CPP options:

PSOURCE Activate point sources (rivers)
ANA_PSOURCE

use analytical vertical profiles for point sources
(set in set_global_definitions.h)

PSOURCE_NCFILE Read variable river transports in netcdf file
PSOURCE_NCFILE_TS Read variable river concentration in netcdf file

ANA_PSOURCE gives the vertical distribution of point source outflow. The default shape is an exponential
vertical distribution. The vertical shape can be customized in subroutine ana_psource in analytical.F

An example of runoff file is given below

netcdf croco_runoff {
dimensions:
qbar_time = 28193 ;
n_qbar = 9 ;
runoffname_StrLen = 30 ;
two = 2 ;
temp_src_time = 10690 ;
salt_src_time = 10690 ;
variables:
double qbar_time(qbar_time) ;
qbar_time:long_name = "runoff time" ;
qbar_time:units = "days" ;
qbar_time:cycle_length = 0. ;
qbar_time:long_units = "days since 1900-01-01" ;

char runoff_name(n_qbar, runoffname_StrLen) ;
runoff_name:long_name = "runoff name" ;

double runoff_position(n_qbar, two) ;
runoff_position:long_name = "position of the runoff (by line) in the CROCO grid" ;

double runoff_direction(n_qbar, two) ;
runoff_direction:long_name = "direction/sense of the runoff (by line) in the CROCO␣

→˓grid" ;
double Qbar(n_qbar, qbar_time) ;
Qbar:long_name = "runoff discharge" ;
Qbar:units = "m3.s-1" ;

double temp_src_time(temp_src_time) ;
temp_src_time:cycle_length = 0. ;
temp_src_time:long_units = "days since 1900-01-01" ;

double salt_src_time(salt_src_time) ;
salt_src_time:cycle_length = 0. ;
salt_src_time:long_units = "days since 1900-01-01" ;

double temp_src(n_qbar, temp_src_time) ;
temp_src:long_name = "runoff temperature" ;
temp_src:units = "Degrees Celcius" ;

double salt_src(n_qbar, temp_src_time) ;
salt_src:long_name = "runoff salinity" ;
salt_src:units = "psu" ;

}

When using PSOURCE, Isrc and Jsrc refer to the i,j index of the u-face or v-face the flow crosses - NOT the i,j index
of the rho cell it flows into. The i,j values must follow ROMS Fortran numbering convention for the appropriate

1.9. Rivers 53

Croco Documentation, Release 2.0.0

u-point or v-point on the ROMS staggered grid.

This numbering convention is shown in the figure below (Courtesy of ROMS-RUTGERS team) for flow crossing
a u-face into a cell from either the left or the right. This makes it more obvious why the index of the u-face must
be specified, because to give the i,j indices of the receiving rho-cell would be ambiguous.

The u-face or v-face should be a land/sea mask boundary (i.e. a coastline). If the cell face is placed wholly in the
land you get nothing because there is no wet cell for the flow to enter. If the face is in the middle of open water
you have a situation where the flow at that cell face computed by the advection algorithm is ‘REPLACED, not
augmented, by the source.

It is very easy to misconfigure source/sink locations so caution and careful checking is required.

1.10 Tides

Related CPP options:

TIDES Activate tidal forcing at open boundaries
SSH_TIDES Process and use tidal sea level data
UV_TIDES Process and use tidal current data
OBC_REDUCED_PHYSICS

Compute tidal velcocity from tidal elevation
in case of tidal current is not available

TIDERAMP

Apply ramping on tidal forcing (1 day) at
initialization
Warning! This should be undefined if restarting the
model

54 Chapter 1. Model Documentation

https://myroms.org/

Croco Documentation, Release 2.0.0

Preselected options:

ifdef TIDES
define SSH_TIDES
define UV_TIDES
ifndef UV_TIDES
define OBC_REDUCED_PHYSICS
endif
define TIDERAMP
endif

1.11 Nesting Capabilities

To address the challenge of bridging the gap between near-shore and offshore dynamics, a nesting capability has
been added to CROCO and tested for the California Upwelling System [Debreu et al., 2012, Penven et al., 2006].
The method chosen for embedded griding takes advantage of the AGRIF (Adaptive Grid Refinement in Fortran)
package [Debreu et al., 2012, Blayo and Debreu, 1999, Debreu et al., 2008]. AGRIF is a Fortran 95 package for
the inclusion of adaptive mesh refinement features within a finite difference numerical model. One of the major
advantages of AGRIF in static-grid embedding is the ability to manage an arbitrary number of fixed grids and an
arbitrary number of embedding levels.

A recursive integration procedure manages the time evolution for the child grids during the time step of the parent
grids (Fig. 2). In order to preserve the CFL criterion, for a typical coefficient of refinement (say, a factor of 3 for
a 5 km resolution grid embedded in a 15 km grid), for each parent time step the child must be advanced using a
time step divided by the coefficient of refinement as many time as necessary to reach the time of the parent (Fig.
2). For simple 2-level embedding, the procedure is as follows:

1. Advance the parent grid by one parent time step.

2. Interpolate the relevant parent variables in space and time to get the boundary conditions for the child grid.

3. Advance the child grid by as much child time steps as necessary to reach the new parent model time.

4. Update point by point the parent model by averaging the more accurate values of the child model (in case of
2-way nesting).

The recursive approach used in AGRIF allows the specification of any number of nesting levels. Additional CPP
options are related to AGRIF, they are in set_global_definitions.h and set_obc_definitions.h files. These are default
options intended for nesting developers and should not be edit by standard users.

For a better understanding of ROMS nesting capabilties using AGRIF, check the published articles on
CROCO/ROMS nesting implementation and also the AGRIF project homepage:

1. CROCO/ROMS 1 way nesting : Penven et al. [2006]

2. CROCO/ROMS 2 way nesting: Debreu et al. [2012]

3. AGRIF homepage : http://www-ljk.imag.fr/MOISE/AGRIF/

Related CPP options:

1.11. Nesting Capabilities 55

http://www-ljk.imag.fr/MOISE/AGRIF/

Croco Documentation, Release 2.0.0

AGRIF Activate nesting capabilities (1-WAY by default)
AGRIF_2WAY Activate 2-WAY nesting (update parent solution by child solution)

1.12 Other modules : sediment models, flow-obstruction models,
biology models

1.12.1 Bottom Boundary Layer model

Related CPP options:

BBL Activate bottom boundary layer parametrization
ANA_WWAVE Set analytical (constant) wave forcing (hs,Tp,Dir).
ANA_BSEDIM Set analytical bed parameters (if SEDIMENT is undefined)
Z0_BL Compute bedload roughness for ripple predictor and sediment purposes
Z0_RIP Determine bedform roughness ripple height and ripple length for sandy bed
Z0_BIO Determine (biogenic) bedform roughness ripple height and ripple length for silty beds

Preselected options:

#ifdef BBL
ifdef OW_COUPLING
elif defined WAVE_OFFLINE
elif defined WKB_WWAVE
else
define ANA_WWAVE
endif
ifdef SEDIMENT
undef ANA_BSEDIM
else
define ANA_BSEDIM
endif
ifdef SEDIMENT
define Z0_BL
else
undef Z0_BL
endif
ifdef Z0_BL
define Z0_RIP
endif
undef Z0_BIO
#endif

DESCRIPTION
Reynolds stresses, production and dissipation of turbulent kinetic energy, and gradients in velocity and suspended-
sediment concentrations vary over short vertical distances, especially near the bed, and can be difficult to resolve
with the vertical grid spacing used in regional-scale applications. CROCO provides algorithms to parameterize
some of these subgrid-scale processes in the water column and in the bottom boundary layer (BBL). Treatment of
the BBL is important for the circulation model solution because it determines the stress exerted on the flow by the
bottom, which enters the Reynolds-averaged Navier-Stokes equations as a boundary conditions for momentum in

56 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

the x and y directions:

𝐾𝑚
𝜕𝑢

𝜕𝑠
= 𝜏𝑏𝑥

𝐾𝑚
𝜕𝑣

𝜕𝑠
= 𝜏𝑏𝑦

Determination of the BBL is even more important for the sediment-transport formulations because bottom stress
determines the transport rate for bedload and the resuspension rate for suspended sediment.

CROCO implements either of two methods for representing BBL processes: (1) simple drag-coefficient expressions
or (2) more complex formulations that represent the interactions of wave and currents over a moveable bed. The
drag-coefficient methods implement formulae for linear bottom friction, quadratic bottom friction, or a logarithmic
profile. The other, more complex wave-current BBL model is described by Blaas et al. [2007] with an example
of its use on the Southern California continental shelf. The method uses efficient wave-current BBL computations
developed by Soulsby [1995] in combination with sediment and bedform roughness estimates of Grant and Madsen
[1982], Nielsen [1986] and Li and Amos [2001].

Linear/quadratic drag
The linear and/or quadratic drag-coefficient methods depend only on velocity components u and v in the bottom
grid cell and constant, spatially-uniform coefficients 𝛾1 and 𝛾2 specified as input:

𝜏𝑏𝑥 = (𝛾1 + 𝛾2
√︀
𝑢2 + 𝑣2) 𝑢

𝜏𝑏𝑦 = (𝛾1 + 𝛾2
√︀
𝑢2 + 𝑣2) 𝑣

where 𝛾1 is the linear drag coefficient and 𝛾2 is the quadratic drag coefficient. The user can choose between
linear or quadratic drag by setting one of these coefficients to zero. The bottom stresses computed from these
formulae depend on the elevation of u and v (computed at the vertical mid-elevation of the bottom computational
cell). Therefore, in this s-coordinate model, the same drag coefficient will be imposed throughout the domain even
though the vertical location of the velocity is different.

Logarithmic drag (with roughness length 𝑧0)

To prevent this problem, the quadratic drag 𝛾2 can be computed assuming that flow in the BBL has the classic
vertical logarithmic profile defined by a shear velocity 𝑢* and bottom roughness length 𝑧0 (m) as:

|𝑢| = 𝑢*
𝜅

ln

(︂
𝑧

𝑧0

)︂
where |𝑢| =

√
𝑢2 + 𝑣2, friction velocity 𝑢* =

√
𝜏𝑏, z is the elevation above the bottom (vertical mid-elevation

point of the bottom cell), 𝜅 = 0.41 is von Kármán’s constant. 𝑧0 is an empirical parameter. It can be constant
(default) or spatially varying. Kinematic stresses are calculated as`

𝜏𝑏𝑥 =
𝜅2

ln2 (𝑧/𝑧0)

√︀
𝑢2 + 𝑣2𝑢

𝜏𝑏𝑦 =
𝜅2

ln2 (𝑧/𝑧0)

√︀
𝑢2 + 𝑣2𝑣

The advantage of this approach is that the velocity and the vertical elevation of that velocity are used in the equation.
Because the vertical elevation of the velocity in the bottom computational cell will vary spatially and temporally,
the inclusion of the elevation provides a more consistent formulation.

Combined wave-current drag (BBL)
To provide a more physically relevant value of 𝑧0, especially when considering waves and mobile sediments, a
more complex formulation is available (BBL).

The short (order 10-s) oscillatory shear of wave-induced motions in a thin (a few cm) wave-boundary layer pro-
duces turbulence and generates large instantaneous shear stresses. The turbulence enhances momentum transfer,
effectively increasing the bottom-flow coupling and the frictional drag exerted on the wave-averaged flow. The
large instantaneous shear stresses often dominate sediment resuspension and enhance bedload transport. Sediment
transport can remold the bed into ripples and other bedforms, which present roughness elements to the flow. Bed-
load transport can also induce drag on the flow, because momentum is transferred to particles as they are removed

1.12. Other modules : sediment models, flow-obstruction models, biology models 57

Croco Documentation, Release 2.0.0

from the bed and accelerated by the flow. Resuspended sediments can cause sediment-induced stratification and,
at high concentrations, change the effective viscosity of the fluid.

The BBL parameterization implemented in CROCO requires inputs of velocities u and v at reference elevation
z, representative wave-orbital velocity amplitude 𝑢𝑏, wave period T, and wave propagation direction 𝜃 (degrees,
clockwise from north). The wave parameters may be the output of a wave model such as WKB or WW3 or simpler
calculations based on specified surface wave parameters. Additionally the BBL models require bottom sediment
characteristics (median grain diameter 𝐷50, mean sediment density 𝜌𝑠, and representative settling velocity 𝑤𝑠);
these are constant (ANA_BSEDIM) or based on the composition of the uppermost active layer of the bed sediment
during the previous time step if the sediment model is used.

The wave-averaged, combined wave–current bottom stress is expressed as function of 𝜏𝑤 and 𝜏𝑐 (i.e., the stress due
to waves in the absence of currents and due to currents in the absence of waves, respectively) according to Soulsby
[1995]:

𝜏𝑤𝑐 = 𝜏𝑐

(︃
1 + 1.2

(︂
𝜏𝑤

𝜏𝑤 + 𝜏𝑐

)︂3.2
)︃

The maximum wave–current shear stress within a wave cycle is obtained by adding 𝜏𝑤𝑐 and 𝜏𝑤 (with 𝜑 the angle
between current and waves):

𝜏𝑤𝑐 =
(︀
(𝜏𝑤𝑐 + 𝜏𝑤 cos𝜑)2 + (𝜏𝑤 sin𝜑)2

)︀1/2
The stresses 𝜏𝑐 and 𝜏𝑤 are determined using:

𝜏𝑐 =
𝜅2

ln2 (𝑧/𝑧0)
|𝑢|2

𝜏𝑤 = 0.5𝜌𝑓𝑤𝑢
2
𝑏

𝑢𝑏, the bottom orbital velocity, is determined from the significant wave height𝐻𝑠 and peak frequency 𝜔𝑝 using the
Airy wave theory:

𝑢𝑏 = 𝜔𝑝
𝐻𝑠

2 sinh 𝑘ℎ

with h the local depth and k the local wave number from the dispersion relation. The wave-friction factor 𝑓𝑤 is,
according to Soulsby [1995]:

𝑓𝑤 = 1.39(𝑢𝑏/𝜔𝑝𝑧0)−0.52

The wave–current interaction in the BBL is taken into account only if 𝑢𝑏 > 1 cm/s; otherwise, current-only
conditions apply.

Shear stress for sediment resuspension and roughness length due to bed form
To determine the shear stress relevant for sediment resuspension and the roughness length due to bed forms, we
follow the concept of Li and Amos [2001] briefly summarized here. First, the maximum wave–current skin friction
𝜏𝑠 is computed from the equations above, using the Nikuradse roughness 𝑧0 = 𝐷50/12.

A bed-load layer develops as soon as the maximum wave–current skin friction 𝜏𝑠 exceeds the critical stress 𝜏𝑐𝑟.
This layer affects the stress effective for ripple formation and sediment resuspension. Subsequently, for sandy
locations, ripple height and length are computed, leading to a space- and time-dependent ripple roughness length
𝑧0 = 𝑧𝑟𝑖𝑝, which is used to compute the drag on the flow (instead of a constant value when BBL is not activated).
This drag provides boundary conditions to the momentum and turbulence equations (KPP or GLS).

58 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.12.2 Sediment models

There are two sediment models in CROCO: the USGS model derived from the UCLA/USGS ROMS community,
and MUSTANG derived from the Ifremer SIAM/MARS community.

1.12.2.1 USGS Sediment Model

This USGS sediment model is derived from the UCLA/USGS ROMS community. See Blaas et al. [2007], Warner
et al. [2008] and Shafiei [2021] for details.

Regarding the time and space resolution considered, the explicit solution generally refers to quantities averaged
over wave periods, although the implementation of a nonhydrostatic solver in CROCO opens the way to a wave-
resolved approach. One of the crucial ingredients in the sediment transport model is a reliable representation of
wave-averaged (or wave-resolved) hydrodynamics and turbulence.

In the wave-averaged approach, the wave boundary layer is not resolved explicitly, but the lower part of the velocity
and sediment concentration profile in the current boundary layer is important for the calculation of the sediment
transport rates. Similarly, an accurate assessment of the bottom boundary shear stress (including wave effects) is
required since it determines the initiation of grain motion and settling and resuspension of suspended load (see
BBL). Thus, the sediment concentration and current velocity profiles in the unresolved part of the near-bottom
layer have to be parameterized. Characterization of the sediments (mainly density and grain size, making general
assumptions about shape and cohesiveness) is done either as a time-dependent prescribed function at the point
sources or at the sea bed as an initial (soon space-dependent) condition. Sediment concentration may be consid-
ered as passive with respect to the flow density or as active if concentration values require such (the latter is not
implemented yet).

1.12.2.1.1 Sediment bed

The sediment bed is represented by three-dimensional arrays with a fixed number of layers beneath each horizontal
model cell. Each cell of each layer in the bed is initialized with a thickness, sediment-class distribution, porosity,
and age. The mass of each sediment class in each cell can be determined from these values and the grain den-
sity. The bed framework also includes two-dimensional arrays that describe the evolving properties of the seabed,
including bulk properties of the surface layer (active layer thickness, mean grain diameter, mean density, mean
settling velocity, mean critical stress for erosion) and descriptions of the subgrid scale morphology (ripple height
and wavelength). These properties are used to estimate bed roughness in the BBL formulations and feed into the
bottom stress calculations. The bottom stresses are then used by the sediment routines to determine resuspension
and transport, providing a feedback from the sediment dynamics to the hydrodynamics.

The bed layers are modified at each time step to account for erosion and deposition and track stratigraphy. At the
beginning of each time step, an active layer thickness 𝑧𝑎 is calculated [Harris and Wiberg, 1997]. 𝑧𝑎 is the minimum
thickness of the top bed layer. If the top layer is thicker than 𝑧𝑎, no action is required. If the top layer is less than 𝑧𝑎,
then the top layer thickness is increased by entraining sediment mass from deeper layers until the top layer thickness
equals 𝑧𝑎. If sediment from deeper than the second layer is mixed into the top layer, the bottom layer is split to
enforce a constant number of layers and conservation of sediment mass. Each sediment class can be transported by
suspended-load and/or bedload (below). Suspended-load mass is exchanged vertically between the water column
and the top bed layer. Mass of each sediment class available for transport is limited to the mass available in the
active layer. Bedload mass is exchanged horizontally within the top layer of the bed. Mass of each sediment class
available for transport is limited to the mass available in the top layer. Suspended-sediment that is deposited, or
bedload that is transported into a computational cell, is added to the top bed layer. If continuous deposition results
in a top layer thicker than a user-defined threshold, a new layer is provided to begin accumulation of depositing
mass. The bottom two layers are then combined to conserve the number of layers. After erosion and deposition
have been calculated, the active-layer thickness is recalculated and bed layers readjusted to accommodate it. This
step mixes away any very thin layer (less than the active layer thickness) of newly deposited material. Finally the
surficial sediment characteristics, such as D50, ripple geometry, etc., are updated and made available to the bottom
stress calculations.

1.12. Other modules : sediment models, flow-obstruction models, biology models 59

Croco Documentation, Release 2.0.0

1.12.2.1.2 Suspended-sediment transport

The concentration of sediment suspended in the water column is transported, like other conservative tracers (e.g.,
temperature and salinity) by solving the advection–diffusion equation with a source/sink term for vertical settling
and erosion:

𝜕𝐶

𝜕𝑡⏟ ⏞
𝑅𝐴𝑇𝐸

= − ∇⃗.⃗v𝐶⏟ ⏞
𝐴𝐷𝑉 𝐸𝐶𝑇𝐼𝑂𝑁

+ 𝒟𝐶⏟ ⏞
𝑀𝐼𝑋𝐼𝑁𝐺

− 𝜕𝑤𝑠𝐶

𝜕𝑧⏟ ⏞
𝑆𝐸𝑇𝑇𝐿𝐼𝑁𝐺

+
𝐸

𝛿𝑧𝑏

⃒⃒⃒
𝑧=𝑧𝑏⏟ ⏞

𝐸𝑅𝑂𝑆𝐼𝑂𝑁

𝐶 is the Reynolds-averaged, wave-averaged (unless used in wave-resolving mode) sediment concentration of a
particular size class; v⃗ is the flow velocity (it is the Lagrangian velocity v⃗𝐿 in wave-averaged equations, comprising
the Stokes drift v⃗𝑆).

For each size class, the source or sink term represents the net of upward flux of eroded material E and downward
settling, i.e., the deposition flux. 𝑤𝑠 is the settling velocity, dependent on sediment grain size, but independent
of flow conditions and concentrations. It is an input parameter of the model (WSED in sediment.in; see below).
Settling is computed via a semi-Lagrangian advective flux algorithm, which is unconditionally stable [Durran,
2010]. It uses a piece-wise parabolic vertical reconstruction of the suspended sediment for high-order interpolation,
with WENO constraints to avoid oscillations. 𝐸 is the erosion flux at the sea floor and is only applied to the first
grid level of height 𝑧𝑏 and cell size 𝛿𝑧𝑏. The erosion flux for each class is given by:

𝐸 = 𝐸0(1− 𝑝)𝜑
(︂
𝜏𝑠
𝜏𝑐
− 1

)︂
for 𝜏𝑠 > 𝜏𝑐

𝐸0 is an empirical erosion rate (ERATE parameter in sediment.in; see below); p is the sediment porosity; 𝜑 is the
volumetric fraction of sediment of the class considered; 𝜏𝑐 is the critical shear stress; and 𝜏𝑠 is the shear stress
magnitude on the grains (skin stress due to wave-induced bed orbital velocities and mean bottom currents; see
BBL). The critical shear stress is the threshold for the initiation of sediment motion.

Zero-flux boundary conditions are imposed at the surface and bottom in the vertical diffusion equation. Lateral
open boundaries are treated as other tracers according to Marchesiello et al. [2001]. A quasi-monotonic 5th-order
advection scheme (WENO5-Z, Borges et al. [2008]) can be used for horizontal and vertical advection of all tracers,
including sediments.

1.12.2.1.3 Bedload transport

The bedload flux 𝑞𝑏, which is considered unresolved by the model can be calculated using different bedload models
implemented in CROCO. The formulation by Meyer-Peter Muller [Meyer-Peter and Müller, 1948] is suited to rivers
or continental shelf problems, where nonlinear wave effects are small. For nearshore applications, where wave
nonlinearity is important, the bedload transport formulation proposed by van der A et al. (2013) is implemented
as in Shafiei [2021] following Kalra et al. [2019] with some modifications.

Each formulation depends on the characteristics of individual sediment classes, including median size 𝑑50, grain
density 𝜌𝑠, specific density in water 𝑠 = 𝜌/𝜌𝑠, and critical shear stress 𝜏𝑐. Non-dimensional transport rates Φ are
calculated for each sediment class and converted to dimensional bedload transport rates 𝑞𝑏 using:

𝑞𝑏 = Φ
√︁

(𝑠− 1)𝑔𝑑350𝜌𝑠

These are horizontal vector quantities with directions that correspond to the combined bed-stress vectors. Details
on the computation of Φ differs in the Meyer-Peter Müeller or van der A formulations.

Slope effect: bedload fluxes are corrected to account for the avalanche process, i.e., the gravitational flow of sand
occuring when the bottom slope exceeds the critical slope angle:

𝑞𝑏,𝑠𝑙𝑜𝑝𝑒 = 𝑞𝑏

(︂
0.65

(0.65− tan𝛽) cos𝛽

)︂
,

This correction considers the effect of the bed slope 𝛽 = tan−1(𝑑𝑧𝑏/𝑑𝑥). The value 0.65 is derived from the
consideration of an angle of repose of 33∘.

60 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Bedload numerics: bedload fluxes are computed at grid-cell centers and are limited by the availability of each
sediment class in the top layer. Fluxes are then interpolated on cell faces using an upwind approach, either 1rst-
order (e.g., Lesser et al. [2004]) or 5th order, or even a WENO5 interpolation to avoid oscillations. Flux differences
are then used to determine changes of sediment mass in the bed at each grid cell.

1.12.2.1.3.1 Meyer-Peter Müller : Transport by currents

Meyer-Peter Müller [Meyer-Peter and Müller, 1948] formulation :

Φ = 𝑚𝑎𝑥
[︀
8(𝜃𝑠 − 𝜃𝑐)1.5, 0

]︀
where Φ is the magnitude of the non-dimensional transport rate for each sediment class, 𝜃𝑠 is the non-dimensional
Shields parameter for skin stress:

𝜃𝑠 =
𝜏𝑠

(𝑠− 1)𝑔𝑑50

𝜃𝑐 is the critical Shields parameter, and 𝜏𝑠 the magnitude of total skin-friction component of bottom stress computed
from:

𝜏𝑠 =
√︁
𝜏2𝑠𝑥 + 𝜏2𝑠𝑦

where 𝜏𝑠𝑥 and 𝜏𝑠𝑦 are the skin-friction components of bed stress, from currents alone or the maximum wave-
current combined stress, in the x and y directions. These are computed at cell faces (u and v locations) and then
interpolated to cell centers (𝜌 points). The bedload transport vectors are partitioned into x and y components based
on the magnitude of the bed shear stress as:

𝑞𝑏𝑥 = 𝑞𝑏
𝜏𝑠𝑥
𝜏𝑠

𝑞𝑏𝑦 = 𝑞𝑏
𝜏𝑠𝑦
𝜏𝑠

1.12.2.1.3.2 van der A (2013): Transport by nonlinear waves

The SANTOSS bedload model is based on the half-wave cycle concept proposed by Dibajnia and Watanabe [1993]
that captures asymmetric transport by non-linear waves and the effect of phase lag between mobilization and trans-
port. CROCO contains an adapted version by Shafiei [2021], based on the implementation of Kalra et al. [2019].
In our formulation, the effect of wave-averaged currents is removed by default (assuming that the transport by cur-
rents is effectively performed by the suspended load model) and it thus only retains the nonlinear effects of waves.
In the brief presentation below, we retain the current terms for completeness, but focus on wave effects.

The method to obtain bedload transport under asymmetric waves can be divided into three major steps (van der
A, 2013) [Kalra et al., 2019]. In the first step, the asymmetric waveform based on the Ursell number is evaluated
using wave statistics. The Shields parameter for each half cycle of the wave form is computed in the second step.
Finally, a phase lag is estimated from the velocity and sediment concentrations that determine the amount of bedload
transported in the half cycle following mobilization. The non-dimensional bedload transport rate Φ is thus given
by:

Φ =
1

𝑇

[︃
𝜃𝑐⃒⃒
𝜃𝑐
⃒⃒1/2𝑇𝑐(︂Ω𝑐𝑐 +

𝑇𝑐
2𝑇𝑐𝑢

Ω𝑡𝑐

)︂
+

𝜃𝑡⃒⃒
𝜃𝑡
⃒⃒1/2𝑇𝑡(︂Ω𝑡𝑡 +

𝑇𝑡
2𝑇𝑡𝑢

Ω𝑐𝑡

)︂]︃
,

where 𝑇, 𝑇𝑐, 𝑇𝑡, 𝑇𝑐𝑢 and 𝑇𝑡𝑢 are the wave period, duration of wave crest half cycle, duration of wave trough half
cycle, duration of accelerating flow within the crest half cycle and duration of accelerating flow within the trough
half cycle respectively, 𝜃𝑐 and 𝜃𝑡 represent the Shields numbers associated with the wave crest and trough half
cycles. The sand load transported during the crest period is the combination of Ω𝑐𝑐 (mobilized during the crest
period) and Ω𝑡𝑐 (mobilized during the trough period). Similarly, Ω𝑡𝑡 and Ω𝑐𝑡 are the sand load transported during
the trough period (mobilized during the trough and crest periods respectively).

1.12. Other modules : sediment models, flow-obstruction models, biology models 61

Croco Documentation, Release 2.0.0

The sand load transported during each half-cycle is conventionally modeled according to a power law of Shields
number:

Ω𝑖 = max
(︁

11
(︀⃒⃒
𝜃𝑖
⃒⃒
− 𝜃𝑐𝑟

)︀1.2
, 0
)︁
,

where 𝜃𝑐𝑟 is the critical Shields number and, hereafter, the subscript “i” is either “c” for crest or “t” for trough half
cycles. To determine Ω𝑐𝑡 and Ω𝑡𝑐, i.e., the portion of the bedload remaining in suspension to be transported in the
next half cycle, a phase lag parameter is evaluated.

Let’s assume a two-dimensional (x,z) cross-shore problem for simplicity. The Shields number for the peak or
trough (𝜃𝑖 = 𝜃𝑡 or 𝜃𝑐) is calculated according to:

𝜃𝑖 =
1
2𝑓𝑤𝛿𝑖|𝑢𝑖,𝑟|𝑢𝑖,𝑟
(𝑠− 1)𝑔𝑑50

.

𝑢𝑖,𝑟 is the representative cross-shore combined wave-current velocity at trough or crest half cycles calculated as:

𝑢𝑖,𝑟 =
�̂�𝑖√

2
+ |𝑢𝛿|,

where �̂�𝑖 is the peak crest or trough orbital velocities, 𝑢𝛿 is the steady current velocity at the top of the wave
boundary layer. 𝑓𝑤𝛿𝑖 is the linear wave-current friction factor at crest or trough calculated by Ribberink [1998]:

𝑓𝑤𝛿𝑖 =
�̂�

𝑢𝛿 + �̂�
𝑓𝑤𝑖 +

𝑢𝛿
𝑢𝛿 + �̂�

𝑓𝛿

where �̂� is the representative orbital velocity amplitude for the whole flow cycle (given by �̂� =
√

2𝑢𝑜𝑟𝑏). 𝑓𝛿 is
the current-related friction factor dependent on a current-related roughness 𝑘𝑠𝛿 and 𝑓𝑤𝑖 is the wave friction factor,
calculated separately for the crest and trough half-cycles and depends on a wave-related roughness 𝑘𝑠𝑤. If the
representative orbital excursion amplitude �̂� = �̂�𝑇/2𝜋 is large enough (i.e., greater than 1.587 𝑘𝑠𝑤):

𝑓𝑤𝑖 = 0.00251 𝑒
5.21

[︂(︂
2𝑇𝑖𝑢

𝑇𝑖

)︂2.6
�̂�
𝑘𝑠𝑤

]︂−0.19

,

otherwise, 𝑓𝑤𝑖 = 0.3.

If 𝑢𝛿 = 0 (𝑢𝑖,𝑟 = �̂�𝑖/
√

2 and 𝑓𝑤𝛿𝑖 = 𝑓𝑤𝑖), the effect of currents is completely removed from the bedload transport
calculation. This choice represents our default to avoid double counting the transport by wave-averaged currents.

Finally, following Kalra et al. [2019], after calculating Φ, we apply to 𝑞𝑏 a bedload factor 𝑓𝑏𝑙𝑑 (bedload_coeff
in CROCO). This factor allows us to adjust the relative contribution to sediment transport of wave-induced bed-
load compared to the suspended load transported by mean currents. In this way, we have a better control of the
antagonistic mechanisms that govern onshore and offshore transports respectively.

1.12.2.1.4 Morphology

The bed evolution (variation in time of 𝑧𝑏, the height of the bed), is calculated from the divergence of sediment fluxes
(Exner equation), which results from the difference between erosion and sedimentation of suspended sediments.
In wave-averaged equations, where residual wave effects need to be parametrized as bedload fluxes 𝑞𝑏, the bed
evolution also arises from the divergence of these fluxes.

𝜕𝑧𝑏
𝜕𝑡

= − 𝑓𝑚𝑜𝑟
1− 𝑝

(︂
𝜕𝑞𝑏
𝜕𝑥
− 𝑤𝑠

𝜕𝐶

𝜕𝑧
+ 𝐸

)︂
.

This equation accounts for a morphological acceleration factor 𝑓𝑚𝑜𝑟 (morph_fac in CROCO). A value of 1 has
no effect, and values greater than 1 accelerate the bed response. The concept of morphological acceleration is
based on the fact that morphodynamic changes are slower than hydrodynamic ones [van Rijn, 1993]. In this case,
the bed evolution can be accelerated without affecting the hydro-morphological solution. The increased rate of
morphological change can be useful for simulating evolution over long time periods. Strategies for morphological
updating are described by Roelvink [2006] and implemented in CROCO following Warner et al. [2008]. In our
implementation, bedload fluxes, erosion, and deposition rates are multiplied by 𝑓𝑚𝑜𝑟, while the magnitude of
sediment concentrations in the water column is not modified – just the exchange rate to and from the bed. For both

62 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

bedload and suspended load, sediment is limited in availability, based on the true amount of sediment mass (not
multiplied by the scale factor).

For dynamical consistency, the vertical velocity is modified (in omega.F) by the rate of change of vertical grid
levels 𝑑𝑧/𝑑𝑡, adjusting to the moving sea floor and free surface (grid “breathing” component; Shchepetkin and
McWilliams [2005]). This method is mass conserving and retains tracer constancy preservation.

1.12.2.1.5 Sediment Density

Witt CPP SED_DENS, effects of suspended sediment on the density field are included with terms for the weight
of each sediment class in the equation of state for seawater density as:

𝜌 = 𝜌𝑤𝑎𝑡𝑒𝑟 +

𝑁𝑠𝑒𝑑∑︁
𝑚=1

𝐶𝑚
𝜌𝑠,𝑚

(𝜌𝑠,𝑚 − 𝜌𝑤𝑎𝑡𝑒𝑟)

This enables the model to simulate processes where sediment density influences hydrodynamics, such as density
stratification and gravitationally driven flows.

Related CPP options:

SUSPLOAD Activate suspended load transport
BEDLOAD Activate bedload transport
MORPHODYN Activate morphodynamics
BEDLOAD_VANDERA van der A formulation for bedload (van der A et al., 2013)
BEDLOAD_MPM Meyer-Peter-Muller formulation for bedload [Meyer-Peter and Müller, 1948]
SLOPE_LESSER Lesser formulation for avalanching [Lesser et al., 2004]
SLOPE_NEMETH Nemeth formulation for avalanching (Nemeth et al, 2006)
BEDLOAD_UP1 Bedload flux interpolation: upwind 1rst order
BEDLOAD_UP5 Bedload flux interpolation: upwind 5th order
BEDLOAD_WENO5 Bedload flux interpolation: WENO 5th order
ANA_SEDIMENT Set analytical sediment size, initial ripple and bed parameters
ANA_BPFLUX Set kinematic bottom flux of sediment tracer (if different from 0)
SPONGE_SED Gradually reduce erosion/deposition near open boundaries
SED_DENS Activate the effect of suspended sediment on the density field

Preselected options:

#ifdef SEDIMENT
undef MUSTANG
define ANA_SEDIMENT
define SPONGE_SED
define Z0_BL
define Z0_RIP
ifdef BEDLOAD
ifdef BEDLOAD_VANDERA /* default BEDLOAD scheme */
elif defined BEDLOAD_MPM
elif defined BEDLOAD_WULIN
elif defined BEDLOAD_MARIEU
else
if (defined WAVE_OFFLINE || defined WKB_WWAVE ||\

defined ANA_WWAVE || defined OW_COUPLING)
define BEDLOAD_VANDERA
else
define BEDLOAD_MPM
endif

(continues on next page)

1.12. Other modules : sediment models, flow-obstruction models, biology models 63

Croco Documentation, Release 2.0.0

(continued from previous page)

endif
ifdef BEDLOAD_UP1 /* default INTERPOLATION */
elif defined BEDLOAD_UP5
elif defined BEDLOAD_WENO5
else
define BEDLOAD_UP1
endif
ifdef SLOPE_LESSER /* default SLOPE scheme */
elif defined SLOPE_NEMETH
elif defined SLOPE_KIRWAN
else
define SLOPE_LESSER
endif
endif /* BEDLOAD */
#endif /* SEDIMENT */

Parameters in sediment.in

1 Stitle (a80)
CROCO - Sediment - Test

2 Sd(1-NST), CSED, SRHO, WSED, ERATE, TAU_CE, TAU_CD, BED_FRAC(1:NLAY)
0.125 9.9 2650. 9.4 25.0e-5 0.05 0.14 0.4 0.4
0.050 0.0 2650. 1.6 4.0e-5 0.01 0.14 0.6 0.6

3 BTHK(1:NLAY)
1. 10.

4 BPOR(1:NLAY)
0.41 0.42

5 Hrip
0.03

6 Lrip
0.14

7 bedload_coeff
0.

8 morph_fac
10.

9 transC
0.03

10 transN
0.2

11 tcr_min
0.03

12 tcr_max
5.5

13 tcr_slp
(continues on next page)

64 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

(continued from previous page)

0.3

14 tcr_off
1.

15 tcr_tim
28800.

16 L_ADS L_ASH L_COLLFRAG L_TESTCASE
F T F F

17 F_DP0 F_NF F_DMAX F_NB_FRAG F_ALPHA F_BETA F_ATER F_ERO_FAC F_
→˓ERO_NBFRAG F_COLLFRAGPARAM F_CLIM F_ERO_IV

0.000004 2. 0.0015 2. 0.35 0.15 0. 0. ␣
→˓2. 0.01 0.001 1

18 MUD_FRAC_EQ [1:NMUD]
0.10 0.20 0.40 0.20 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

19 MUD_T_DFLOC
200.

99 END of sediment input data

GLOSSARY

CARD 1: String with a maximum of eighty characters.
• Stitle : Sediment case title.

CARD 2: Sediment grain parameters & initial values (NST lines)
• Sd : Diameter of grain size class [mm].

• CSED : Initial concentration (spatially uniform) [kg/m3].

• SRHO : Density of sediment material of size class [kg/m3]. Quartz: SRHO=2650 𝑘𝑔/𝑚3

• WSED : Settling velocity of size class [mm/s].

Typically [Soulsby, 1997]:

WSED = 103 (𝑣𝑖𝑠𝑐 (
√

10.362 + 1.049𝐷3 − 10.36) / 𝐷50 [mm/s]

with

– 𝐷 = 𝐷50 (𝑔 (SRHO/𝜌0 − 1) / (𝑣𝑖𝑠𝑐2))0.33333

– 𝐷50 = 10−3𝑆𝑑 [m]

– 𝑣𝑖𝑠𝑐 = 1.3 10−3/𝜌0 [m2/s]

• ERATE : Erosion rate of size class [kg/m2/s].

Typically:

ERATE = 10−3 𝛾0 WSED SRHO [𝑘𝑔/𝑚2/𝑠]

with 𝛾0 = 10−3 − 10−5 [Smith and McLean, 1977]

• TAU_CE : Critical shear stress for sediment motion [N/m2] (initiation of bedload for coarses, suspension
for fines).

Typically :

1.12. Other modules : sediment models, flow-obstruction models, biology models 65

Croco Documentation, Release 2.0.0

TAUCE = 6.4 10−7 𝜌0 WSED2 [N/m2]

• TAU_CD : Critical shear stress for deposition of cohesive sediments [N/m2]

• BED_FRAC : Volume fraction of each size class in each bed layer (NLAY columns)

[0<BED_FRAC<1]

CARD 3: Sediment bed thickness, 1st field is top layer (‘delt_a’)
• BTHK : Initial thicknesses of bed layers [m] Bthk(1) active layer thickness, fixed in simulation unless

SUM(Bthk(:))<Bthk(1)

CARD 4: Sediment bed porosity
• BPOR : Initial porosity of bed layers [m] used in ana_sediment ifdef ANA_SEDIMENT (not in init.nc)

CARD 5: Bottom ripple height
• Hrip : Initial ripple height [m] used in ana_sediment ifdef ANA_SEDIMENT (not in init.nc)

CARD 6: Bottom ripple length
• Lrip : Initial ripple length [m] used in ana_sediment ifdef ANA_SEDIMENT (not in init.nc)

CARD 7: Bedload coefficient
• bedload_coeff : factor limiting the magnitude of bedload flux 0<bedload_coef<1

CARD 8: Morphological acceleration factor
• morph_fac : factor accelerating bed evolution morph_fac>=1

CARD 9 :
• transC : Cohesive transition- Under that value of total mud fraction entire bed behaves as a non-cohesive

bed

CARD 10 :
• transN : Noncohesive transition- Over that value of total mud fraction entire bed behaves as a cohesive bed

CARD 11 :
• tcr_min : Minimum shear for erosion

CARD 12 :
• tcr_max : Maximum shear for erosion

CARD 13 :
• tcr_slp : Tau_crit profile slope

66 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

CARD 14 :
• tcr_off : Tau_crit profile offset

CARD 15 :
• tcr_tim : Tau_crit consolidation rate

CARD 16 : booleans for flocculation
• L_ADS : Boolean set to .true. if differential settling aggregation

• L_ASH : Boolean set to .true. if shear aggregation

• L_COLLFRAG : Boolean set to .true. if collision-induced fragmentation enable

• L_TESTCASE : If .TRUE. sets G(t) to values from Verney et al. [2011] lab experiment

CARD 17 : flocculation Sediment Parameters
• F_DP0 : Primary particle size (m), typically 4e-6 m

• F_NF : Floc fractal dimension, typically ranging from 1.6 to 2.6

• F_DMAX : Maximum diameter (m)

1.12.2.2 MUSTANG Sediment model

1.12.2.2.1 MUSTANG presentation

MUSTANG (MUd and Sand Tran ANSsport modelli NG) is a sediment module. Comparing to a pure hydrody-
namical simulation, it adds variables relatives to sediment behavior such as sediment concentration in water and
sediment bed evolution. This module has been developped by Le Hir et al, coupled with the hydrodynamic model
SiAM. Then, it has continued to evolve, coupled with the parallelized MARS3D hydrodynamic model. It is now
renamed MUSTANG (MUd and Sand TranSport modelliNG) and is available in the CROCO community model
since release 1.2.

The module provides for the modeling of two types of sediment transport:

• Bedload : sediment particles are set in motion from a certain critical tension. They move by staying close
to the bottom

• Suspension : sediment particles are suspended in the water column. They are transported in the water
column as a passive tracer with a settling velocity through the advection-diffusion equation and eventually
settle to the bottom.

MUSTANG module deals with various sediments classified into 3 types: GRAVEL, SAND and MUD. Gravels are
transported only in bedload (no suspension). Sands can be transported by both types. Muds are transported only
in suspension (no bedload).

From a sedimentary bottom consisting of a set of sedimentary facies, each of which is defined by a proportion
of each of the classes, hydrosedimentary modeling consists of changing the proportions of each class of the sedi-
mentary bottom as well as the thickness of the layers which constitute it, and therefore the bathymetry. It is then
possible to inject the new bathymetry thus obtained into the hydrodynamic module (morphodynamic coupling).

1.12. Other modules : sediment models, flow-obstruction models, biology models 67

Croco Documentation, Release 2.0.0

MUSTANG computes these evolutions by taking into account several processes such as settling, flocculation, ero-
sion fluxes, deposit fluxes, consolidation (porosity) in sediment bed, bedload transport for non-cohesive sediment,
morphodynamic. . .

There are 2 main options for this module:

• One equivalent to the previous module “mixsed” [Le Hir et al., 2011] - default
• One developped by Mengual et al. [2021], which includes bedload processes [Rivier et al., 2017] - activated

by cppkey #key_MUSTANG_V2
MUSTANG sediment compartment is 1DV in the sediment part, all exchanges between horizontal meshes, such
as bedload, lateral erosion or sliding effect, are done at the interface between sediment and water.

MUSTANG consider 3 types of sediment but all features are not available for all type of sediment :

68 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Type

Bedload transport
(if
#key_MUSTANG_V2 &

#key_MUSTANG_bedload)

Suspended load

Flocculation
(if
#key_MUSTANG_flocmod)

MUD NO YES YES
SAND YES YES NO
GRAVEL YES NO NO

Other substances can be defined via the susbstance module and can interact with sediment depending on their
characteristics.

This documentation presents :

• in MUSTANG user guide, input and output files format are detailed and available cppkeys are listed with a
description of the effect of each key and a list of compatibility/incompatibility between keys

• in MUSTANG technical documentation, a description of the insertion of MUSTANG calls in the CROCO
temporal loop and a description of the modelisation of the main processes

1.12.2.2.2 MUSTANG user guide

MUSTANG module can not be used alone, it needed an hydrodynamic model and the substance module.

In this documentation, the hydrodynamic model is CROCO. Hydrodynamic parametrization will not be detailed
here, please refer to hydrodynamic module documentation.

To use MUSTANG in CROCO you will need to :

• define appropriate cppkeys in cppdefs.h. To activate MUSTANG within CROCO environment, the MUS-
TANG and SUBSTANCE cppkeys must be defined. To activate certains processes other cppkeys must be
defined (see available cppkeys)

1.12. Other modules : sediment models, flow-obstruction models, biology models 69

Croco Documentation, Release 2.0.0

• define MUSTANG and SUBSTANCE files in CROCO input file croco.in, these file contains MUSTANG
parameters and SUBSTANCE characteristics (see MUSTANG namelist and SUBSTANCE namelist)

• define appropriate dimensions in param.h file

• depending on the options you choose via your cppkeys and input file (MUSTANG namelist and SUBSTANCE
namelist), you will have to define other input file such as initialization file, wave file, source with solid
discharge file

Then you can compile and run CROCO as any other CROCO run.

Note: MUSTANG is controlled through both CPP keys and input files. For some processes it is needed to activate
the options through a CPP key, and also through a flag (true or false) in the input files

1.12.2.2.2.1 Input file : croco.in

The name and location of the MUSTANG and SUBSTANCE input files are defined in CROCO input file croco.in
as follow:

sediments_mustang: input file
MUSTANG_NAMELIST/parasubstance.txt
MUSTANG_NAMELIST/paraMUSTANG.txt

In this example, the files are located in MUSTANG_NAMELIST directory but they could be placed in any directory.
Therefore, example and test cases namelists could be found in MUSTANG_NAMELIST directory in MUSTANG
source directory.

In particular, in MUSTANG_NAMELIST directory (relative path from the current directory where croco exe-
cutable is), a file paraMUSTANG_default.txt contains all default values used, if the user does not specify a
parameter in the namelist file, the default value in MUSTANG_NAMELIST/paraMUSTANG_default.txt is used.

There is no default file for susbstance but a full example is given in MUSTANG_NAMELIST directory in MUS-
TANG source directory.

1.12.2.2.2.2 Input file : param.h

Before the code compilation, the following dimensions must be defined in the param.h file to use SUBSTANCE
and MUSTANG :

• ksdmin and ksdmax: integers corresponding to the layers of sediment (sediment variables are allocated with
ksdim:ksdmax dimension)

• ntrc_subs: number of substance corresponding to a tracer (advected)

• ntfix: number of fixed substance (not advected)

• ntrc_substot: total number of substance (= ntrc_subs + ntfix)

If these dimensions are modified, the code must be compiled again.

70 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.12.2.2.2.3 Input file : Substance namelist

Substance module allow to define 8 different types of substance with different behavior. Sediments are defined as
MUD, SAND or GRAVEL.

Substance input file contains at least 5 namelists and at most 10 namelists depending on the cppkeys MUSTANG,
key_benthic and SUBSTANCE_SUBMASSBALANCE :

• nmlnbvar : number of each type of substance to be defined (other than T (temperature) & S (salinity))

• nmlpartnc : characterization of Non Constitutive Particulate subtances

• nmlpartsorb : characterization of particulate susbtances sorbed on an other particule

• nmlvardiss : characterization of dissolved susbtances

• nmlvarfix :characterization of fixed susbtances (not advected)

• nmlgravels (if MUSTANG only) : characterization of GRAVEL substances

• nmlsands (if MUSTANG only) : characterization of SAND substances

• nnmlmuds (if MUSTANG only) : characterization of MUD substances

• nmlvarbent (if key_benthic only) : characterization of benthic substances

• nmlsubmassbalance (if SUBSTANCE_SUBMASSBALANCE only) : parameters for submassbalance com-
putation (see also : Details on submassbalance computation)

Each namelist is described bellow with the description of each parameter.

&nmlnbvar namelist:

• nv_dis : number of dissolved susbtances

• nv_ncp: number of Non Constitutive Particulate subtances, like for example trace metals, bacteria, nitrogen,
organic matter.

• nv_fix : number of fixed susbtances (not advected)

• nv_bent : number of benthic susbtances

• nv_grav : number of Constitutive susbtances type GRAVELS (only if cppkey MUSTANG)

• nv_sand : number of Constitutive susbtances type SAND (only if cppkey MUSTANG)

• nv_mud : number of Constitutive susbtances type MUD (only if cppkey MUSTANG)

• nv_sorb : number of particulate susbtances sorbed on an other particule

Note: If MUSTANG cpp key is not defined, nv_grav, nv_sand and nv_mud are not read and must not be present

&nmlgravels namelist: each parameter is a vector of length nv_grav

• name_var_n() : name of variable

• long_name_var_n() : long name of variable

• standard_name_var_n() : standard name of variable

• unit_var_n() : string, unit of concentration of variable

• flx_atm_n() : uniform atmospherical deposition (unit/m2/s)

• cv_rain_n() : concentration in rainwater (kg/m3 of water)

• cini_wat_n() : initial concentration in water column (kg/m3)

• cini_air_n() : initial concentration in air

• l_out_subs_n() : saving in output file if TRUE

1.12. Other modules : sediment models, flow-obstruction models, biology models 71

Croco Documentation, Release 2.0.0

• init_cv_name_n() : name of substance read from initial condition file

• obc_cv_name_n() : name of substance read from obc file

• cini_sed_n() : initial fraction in the seafloor (only if cppkey MUSTANG)

• tocd_n() : critical stress of deposition (N/m2) (only if cppkey MUSTANG)

• ros_n() : density of particle (kg/m3) (only if cppkey MUSTANG)

• l_bedload_n() : allow bedload transport if true (only if cppkey MUSTANG and key_MUSTANG_V2 and
key_MUSTANG_bedload)

• diam_n() : diameter of particles (m)

Note: If nv_grav = 0 this namelist is not read.

&nmlsands namelist: each parameter is a vector of length nv_sand

• name_var_n() : name of variable

• long_name_var_n() : long name of variable

• standard_name_var_n() : standard name of variable

• unit_var_n() : string, unit of concentration of variable

• flx_atm_n() : uniform atmospherical deposition (unit/m2/s)

• cv_rain_n() : concentration in rainwater (kg/m3 of water)

• cini_wat_n() : initial concentration in water column (kg/m3)

• cini_air_n() : initial concentration in air

• l_out_subs_n() : saving in output file if TRUE

• init_cv_name_n() : name of substance read from initial condition file

• obc_cv_name_n() : name of substance read from obc file

• cini_sed_n() : initial fraction in the seafloor (only if cppkey MUSTANG)

• tocd_n() : critical stress of deposition (N/m2) (only if cppkey MUSTANG)

• ros_n() : density of particle (kg/m3) (only if cppkey MUSTANG)

• l_bedload_n() : allow bedload transport if true (only if cppkey MUSTANG and key_MUSTANG_V2 and
key_MUSTANG_bedload)

• diam_n() : diameter of particles (m)

• l_sand2D() : treat sand variable as 2D variable if true (used only if key_sand2D, see Treatment of high
settling velocities : SAND variables)

• l_outsandrouse() : if true, use a reconstitution of a ROUSE profil for output in water column (used only
if key_sand2D and l_sand2D is TRUE for this variable, see Treatment of high settling velocities : SAND
variables)

Note: If nv_sand = 0 this namelist is not read.

Warning: If you have several sands in your simulation : start with the coarser sands and continue more and
more finely

&nmlmuds namelist: each parameter is a vector of length nv_mud

• name_var_n() : name of variable

72 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

• long_name_var_n() : long name of variable

• standard_name_var_n() : standard name of variable

• unit_var_n() : string, unit of concentration of variable

• flx_atm_n() : uniform atmospherical deposition (unit/m2/s)

• cv_rain_n() : concentration in rainwater (kg/m3 of water)

• cini_wat_n() : initial concentration in water column (kg/m3)

• cini_air_n() : initial concentration in air

• l_out_subs_n() : saving in output file if TRUE

• init_cv_name_n() : name of substance read from initial condition file

• obc_cv_name_n() : name of substance read from obc file

• cini_sed_n() : initial fraction in the seafloor (only if cppkey MUSTANG)

• tocd_n() : critical stress of deposition (N/m2) (only if cppkey MUSTANG)

• ros_n() : density of particle (kg/m3) (only if cppkey MUSTANG)

• cobc_wat_n() : boundaries uniform and constant concentration (kg/m3)

• ws_free_opt_n() : integer, choice of free settling formulation : 0 constant, 1 Van Leussen, 2 Winterwerp, 3
Wolanski (see Settling velocity)

• ws_free_min_n() : minimum setling velocity (m/s) (see Settling velocity)

• ws_free_max_n() : maximum setling velocity (m/s) (see Settling velocity)

• ws_free_para_n(1:4,num substance) : 4 additional parameters (see Settling velocity)

• ws_hind_opt_n() : choice of hindered settling formulation : 0 no hindered settling, 1 Scott, 2 Winterwerp,
3 Wolanski (see Settling velocity)

• ws_hind_para_n(1:2,num substance) : 2 additional parameters (see Settling velocity)

• diam_n() : diameter of particles (m) (used only if #key_mustang_flocmod is activated see FLOCMOD)

Note: If nv_mud = 0 this namelist is not read.

&nmlpartnc namelist: each parameter is a vector of length nv_ncp

• name_var_n() : name of variable

• long_name_var_n() : long name of variable

• standard_name_var_n() : standard name of variable

• unit_var_n() : string, unit of concentration of variable

• flx_atm_n() : uniform atmospherical deposition (unit/m2/s)

• cv_rain_n() : concentration in rainwater (kg/m3 of water)

• cini_wat_n() : initial concentration in water column (kg/m3)

• cini_air_n() : initial concentration in air

• l_out_subs_n() : saving in output file if TRUE

• init_cv_name_n() : name of substance read from initial condition file

• obc_cv_name_n() : name of substance read from obc file

• cini_sed_n() : initial concentration in sediment (quantity/kg of dry sediment) (only if cppkey MUSTANG)

• tocd_n() : critical stress of deposition (N/m2) (only if cppkey MUSTANG)

1.12. Other modules : sediment models, flow-obstruction models, biology models 73

Croco Documentation, Release 2.0.0

• ros_n() : density of particle (kg/m3) (only if cppkey MUSTANG)

• cobc_wat_n() : boundaries uniform and constant concentration (kg/m3)

• ws_free_opt_n() : integer, choice of free settling formulation : 0 constant, 1 Van Leussen, 2 Winterwerp, 3
Wolanski (see Settling velocity)

• ws_free_min_n() : minimum setling velocity (m/s) (see Settling velocity)

• ws_free_max_n() : maximum setling velocity (m/s) (see Settling velocity)

• ws_free_para_n(1:4,num substance) : 4 additional parameters (see Settling velocity)

• ws_hind_opt_n() : choice of hindered settling formulation : 0 no hindered settling, 1 Scott, 2 Winterwerp,
3 Wolanski (see Settling velocity)

• ws_hind_para_n(1:2,num substance) : 2 additional parameters (see Settling velocity)

Note: If nv_ncp = 0 this namelist is not read.

If MUSTANG cpp key is not defined, cini_sed_n, tocd_n, ros_n, ws_free_opt_n, ws_free_para_n,
ws_hind_opt_n, ws_hind_para_n are not read and must not be present

&nmlpartsorb namelist: each parameter is a vector of length nv_sorb

• name_var_n() : name of variable

• long_name_var_n() : long name of variable

• standard_name_var_n() : standard name of variable

• unit_var_n() : string, unit of concentration of variable

• flx_atm_n() : uniform atmospherical deposition (unit/m2/s)

• cv_rain_n() : concentration in rainwater (kg/m3 of water)

• cini_wat_n() : initial concentration in water column (kg/m3)

• cini_air_n() : initial concentration in air

• l_out_subs_n() : saving in output file if TRUE

• init_cv_name_n() : name of substance read from initial condition file

• obc_cv_name_n() : name of substance read from obc file

• cini_sed_n() : initial concentration in sediment (quantity/kg of dry sediment) (only if cppkey MUSTANG)

• cobc_wat_n() : boundaries uniform and constant concentration (kg/m3)

• name_varpc_assoc_n() : name of associated particulate substance on which this substance is sorbed

Note: If nv_sorb = 0 this namelist is not read.

If MUSTANG cpp key is not defined, cini_sed_n is not read and must not be present

&nmlvardiss namelist: each parameter is a vector of length nv_dis

• name_var_n() : name of variable

• long_name_var_n() : long name of variable

• standard_name_var_n() : standard name of variable

• unit_var_n() : string, unit of concentration of variable

• flx_atm_n() : uniform atmospherical deposition (unit/m2/s)

• cv_rain_n() : concentration in rainwater (kg/m3 of water)

74 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

• cini_wat_n() : initial concentration in water column (kg/m3)

• cini_air_n() : initial concentration in air

• l_out_subs_n() : saving in output file if TRUE

• init_cv_name_n() : name of substance read from initial condition file

• obc_cv_name_n() : name of substance read from obc file

• cini_sed_n() : initial concentration in sediment (quantity/kg of dry sediment) (only if cppkey MUSTANG)

• cobc_wat_n() : boundaries uniform and constant concentration (kg/m3)

Note: If nv_dis = 0 this namelist is not read.

If MUSTANG cpp key is not defined, cini_sed_n is not read and must not be present

&nmlvarfix namelist: each parameter is a vector of length nv_fix

• name_var_fix() : name of variable

• long_name_var_fix() : long name of variable

• standard_name_var_fix() : standard name of variable

• unit_var_fix() : string, unit of concentration of variable

• cini_wat_fix() : initial concentration in water column (kg/m3)

• l_out_subs_fix() : saving in output file if TRUE

• init_cv_name_fix() : name of substance read from initial condition file

Note: If nv_fix = 0 this namelist is not read.

&nmlvarbent namelist: each parameter is a vector of length nv_bent

• name_var_bent() : name of variable

• long_name_var_bent() : long name of variable

• standard_name_var_bent() : standard name of variable

• unit_var_bent() : string, unit of concentration of variable

• cini_bent() : initial concentration

• l_out_subs_bent() : saving in output file if TRUE

Note: If nv_bent = 0 or cppkey key_benthic is not defined, this namelist is not read.

&nmlsubmassbalance namelist:

• submassbalance_l : activate submassblance computation if TRUE and if cppkeys SUB-
STANCE_SUBMASSBALANCE is defined

• submassbalance_nb_border : number of polygons and lines

• submassbalance_input_file : path of the input file (see format information here : submassbalance input file
format) (if ‘’ or ‘all_domain’, only one budget zone is taking into account (all the domain) and any fluxes
threw open borders)

• submassbalance_output_file : path of the output file (in netcdf, more information here : submassbalance
output file format)

• submassbalance_dtout : = output frequency in hours (h)

1.12. Other modules : sediment models, flow-obstruction models, biology models 75

Croco Documentation, Release 2.0.0

• submassbalance_date_start : = starting date for budget/fluxes computing, exemple ‘1999/01/01 00:00:00’

Note: If cppkey SUBSTANCE_SUBMASSBALANCE is not defined, this namelist is not read.

1.12.2.2.2.4 Input file : Mustang namelist

Note: If the user does not specify a parameter in the namelist file, the default value in MUS-
TANG_NAMELIST/paraMUSTANG_default.txt is used

This default input files incorporates all the parameters that are needed for both V1 or V2 MUSTANG versions.
Therefore, not all parameters are used, depending on the set of CPP keys or booleans included in the MUSTANG
input file itself.

All the parameters in the paraMUSTANG_default.txt are read first, before reading the user-defined input file defined
in croco.in. The parameters defined in the user-defined namelist file will overwrite those defined in the default file.
The user-defined input file can either be a full copy of the default input file, or only define the parameters that matter
the most for a specific configuration. In the later case, even if the parameters are not mentionned, the namelist group
section needs to be present in the file even if empty, e.g.:

&namsedim_deposition
/

Mustang input file contains at least 10 namelists and at most 16 namelists depending on the cpp-
keys key_MUSTANG_V2, key_MUSTANG_debug, key_MUSTANG_flocmod key_MUSTANG_lateralerosion,
key_noTSdiss_insed :

• namsedim_init : relative to sediment initialization

• namsedim_layer : relative to sediment layers characterization and active layer

• namsedim_bottomstress : relative to bottom shear stress

• namsedim_deposition : relative to sediment deposition

• namsedim_erosion : relative to sediment erosion

• namsedim_poro : relative to porosity (only if key_MUSTANG_V2)

• namsedim_bedload : relative to sediment bedload (only if key_MUSTANG_V2)

• namsedim_lateral_erosion : relative to lateral sediment erosion (only if key_MUSTANG_lateralerosion)

• namsedim_consolidation : relative to sediment consolidation

• namsedim_diffusion : relative to dissolved diffusion in sediment

• namsedim_bioturb : relative to bioturbation in sediment

• namsedim_morpho : relative to morphodynamic

• namtempsed : relative to temperature estimation in sediment (only if !defined key_noTSdiss_insed)

• namsedoutput : parameters used for output results in the file sediment

• namsedim_debug : output for debug (only if key_MUSTANG_debug and key_MUSTANG_V2)

• namflocmod : parameters using for FLOCMOD module (only if key_MUSTANG_flocmod)

Each namelist is described bellow with the description of each parameter.

&namsedim_init :

• date_start_dyninsed : starting date for dynamic processes in sediment

• date_start_morpho : starting date for morphodynamic processes

76 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

• l_repsed : set to .true. if sedimentary variables are initialized from a previous run

• filrepsed : file path from which the model is initialized for the continuation of a previous run. WARNING :
filrepsed must be given if l_bathy_actu = .T. in order to read new h0 even if l_repsed = .F.

• l_initsed_vardiss : set to .true. if initialization of dissolved variables, temperature and salinity in sediment
(will be done with concentrations in water at bottom (k=1))

• l_unised : set to .true. for a uniform bottom initialization

• fileinised : file path for initialization (if l_unised is False)

• hseduni : initial uniform sediment thickness (m)

• cseduni : initial sediment concentration (kg/m3)

• l_init_hsed : set to .true. if we want to adjust the sediment thickness in order to be coherent with sediment
parameters (calculation of a new hseduni based on cseduni, cvolmax values, and csed_ini of each sediment)

• csed_mud_ini : mud concentration into initial sediment (kg/m3) (if = 0. ==> csed_mud_ini = cfreshmud)

• ksmiuni : lower grid cell index in the sediment

• ksmauni : upper grid cell index in the sediment

• sini_sed : initial interstitial water uniform salinity (in the sediment) (PSU)

• tini_sed : initial interstitial water uniform temperature (in the sediment) (Celsius degree)

• poro_mud_ini : if key_MUSTANG_V2 only, initial porosity of mud fraction

&namsedim_layer :

• l_dzsminuni : set to .false. if dzsmin vary with sediment bed composition, else dzsmin = dzsminuni (used
if key_MUSTANG_V2 only)

• dzsminuni : minimum sediment layer thickness (m) (used if key_MUSTANG_V2 only)

• dzsmin : minimum sediment layer thickness (m)

• dzsmax_bottom : maximum thickness of bottom layers which result from the fusion when ksdmax is ex-
ceeded (m)

• l_dzsmaxuni : if set to .true. dzsmax = dzsmaxuni , if set to .false. then linearly computed in MUS-
TANG_sedinit from dzsmaxuni to dzsmaxuni/100 depending on water depth

• dzsmaxuni : uniform maximum thickness for the superficial sediment layer (m), must be >0

• nlayer_surf_sed : number of layers below the sediment surface that can not be melted (max thickness =
dzsmax)

• k1HW97 : ref value k1HW97 = 0.07, parameter to compute active layer thickness [Harris and Wiberg, 1997]
(key_MUSTANG_V2 only)

• k2HW97 : ref value k2HW97 = 6.0, parameter to compute active layer thickness [Harris and Wiberg, 1997]
(key_MUSTANG_V2 only)

• fusion_para_activlayer : criterion cohesiveness for fusion in active layer (key_MUSTANG_V2 only) :

– 0 : no fusion,

– = 1 : frmudcr1,

– > 1 : between frmudcr1 & frmudcr2

&namsedim_bottomstress, this part combine bottom stress and roughness parameters :

• l_z0seduni : if true, z0seduni is used; if false z0sed is computed from sediment diameter

• z0seduni : uniform bed roughness (m)

• z0sedmud : mud (i.e.minimum) bed roughness (m) (used only if l_unised is false)

• z0sedbedrock : bed roughness for bedrock (no sediment) (m) (used only if l_unised is false)

1.12. Other modules : sediment models, flow-obstruction models, biology models 77

Croco Documentation, Release 2.0.0

• l_fricwave : if true the wave related friction factor is computed from wave orbital velocity and period; if
false then fricwav namelist value is used (see wave skin friction)

• fricwav : default value is 0.06, wave related friction factor (used for bottom shear stress computation if
l_fricwave is false)

• l_z0hydro_coupl_init : if true the evaluation of z0 hydro depends on sediment composition at the beginning
of the simulation

• l_z0hydro_coupl : if true the evaluation of z0 hydro depends on sediment composition along the run

• coef_z0_coupl : if l_z0hydro_coupl is true, parameter to compute z0hydro in the first centimeter z0hydro =
coef_z0_coupl * sand diameter

• z0_hydro_mud : if l_z0hydro_coupl is true, z0hydro if pure mud (m)

• z0_hydro_bed : if l_z0hydro_coupl is true, z0hydro if no sediment (m)

&namsedim_deposition :

• cfreshmud : prescribed fresh deposit concentration in kg/m3 (must be around 100 if consolidation or higher
(300-500 if no consolidation)

• csedmin : concentration of the upper layer under which there is fusion with the underlying sediment cell (in
kg/m3)

• cmudcr : critical relative concentration of the surface layer above which no mixing is allowed with the
underlying sediment (in kg/m3)

• aref_sand : reference height above sediment in meter. Used for computing of sand deposit for sand ex-
trapolation on water column and correct sand transport, value by default = 0.02 correspond to Van Rijn
experiments. DO NOT CHANGED IF NOT EXPERT. (see Treatment of high settling velocities : SAND
variables)

• cvolmaxsort : maximum volumic concentration of sorted sand

• cvolmaxmel : maximum volumic concentration of mixed sediments

• slopefac : slope effect multiplicative on sliding part of deposit (only if key_MUSTANG_slipdeposit see
sliding fluxes)

&namsedim_erosion :

• activlayer : active layer thickness (m)

• frmudcr2 : critical mud fraction under which the behaviour is purely sandy

• coef_frmudcr1 : such that critical mud fraction under which sandy behaviour (fr-
mudcr1=min(coef_frmudcr1*d50 sand,frmudcr2))

• x1toce_mud : mud erosion parameter : toce = x1_toce_mud*(relative mud concentration)**x2_toce_mud

• x2toce_mud : mud erosion parameter: toce = x1_toce_mud*(relative mud concentration)**x2_toce_mud

• E0_sand_option : choice of formulation for E0_sand evaluation :

– 0 : E0_sand = E0_sand_Cst read in this namelist

– 1 : E0_sand evaluated with Van Rijn [1984] formulation

– 2 : E0_sand evaluated with erodimetry (min(0.27,1000*d50-0.01)*toce**n_eros_sand)

– 3 : E0_sand evaluated with Wu and Lin [2014] formulation

• E0_sand_Cst : constant erosion flux for sand (used if E0_sand_option= 0)

• E0_sand_para : coefficient used to modulate erosion flux for sand (=1 if no correction)

• n_eros_sand : parameter for erosion flux for sand (E0_sand*(tenfo/toce-1.)**n_eros_sand). WARNING :
choose parameters compatible with E0_sand_option (example : n_eros_sand=1.6 for E0_sand_option=1)

• E0_mud : parameters for erosion flux for pure mud

78 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

• E0_mud_para_indep : parameter to correct E0_mud in case of erosion class by class in non cohesive regime
(key_MUSTANG_V2 only)

• n_eros_mud : E0_mud*(tenfo/toce-1.)**n_eros_mud

• ero_option : choice of erosion formulation for mixing sand-mud. These formulations are debatable and
must be considered carefully by the user. Other laws are possible and could be programmed.

– 0 : pure mud behavior (for all particles and whatever the mixture)

– 1 : linear interpolation between sand and mud behavior, depend on proportions of the mixture

– 2 : formulation derived from that of J. Vareilles (2013)

– 3 : formulations proposed by Mengual et al. [2017] with exponential coefficients depend on proportions
of the mixture

• l_xexp_ero_cst : set to .true. if xexp_ero estimated from empirical formulation, depending on frmudcr1
(key_MUSTANG_V2 only)

• xexp_ero : used only if ero_option=3 : adjustment on exponential variation (more brutal when xexp_ero
high)

• tau_cri_option : ichoice of critical stress formulation

– 0: Shields

– 1: Wu and Lin [2014]

• tau_cri_mud_option_eroindep : choice of mud critical stress formulation

– 0: x1toce_mud*cmudr**x2toce_mud

– 1: toce_meansan if somsan>eps (else->case0)

– 2: minval(toce_sand*cvsed/cvsed+eps) if >0 (else->case0)

– 3: min(case 0; toce(isand2)) (key_MUSTANG_V2 only)

• l_eroindep_noncoh :

– set to .true. in order to activate independant erosion for the different sediment classes sands and muds

– set to .false. to have the mixture mud/sand eroded as in version V1 (key_MUSTANG_V2 only)

• l_eroindep_mud :

– set to .true. if mud erosion independant for sands erosion

– set to .false. if mud erosion proportionnal to total sand erosion (key_MUSTANG_V2 only)

• l_peph_suspension: set to .true. if hindering / exposure processes in critical shear stress estimate for sus-
pension (key_MUSTANG_V2 only)

&namsedim_poro : (key_MUSTANG_V2 only)

• poro_option : choice of porosity formulation

– 1: Wu and Li [2017] (incompatible with consolidation))

– 2: mix ideal coarse/fine packing

• poro_min : minimum porosity below which consolidation is stopped

• Awooster : parameter of the formulation of Wooster et al. [2008] for estimating porosity associated to the
non-cohesive sediment see Cui et al. [1996] ; ref value = 0.42

• Bwooster : parameter of the formulation of Wooster et al. [2008] for estimating porosity associated to the
non-cohesive sediment see Cui et al. [1996] ; ref value = -0,458

• Bmax_wu : maximum portion of the coarse sediment class participating in filling; ref value = 0.65

&namsedim_bedload : (key_MUSTANG_V2 only)

• l_peph_bedload : set to .true. if hindering / exposure processes in critical shear stress estimate for bedload

1.12. Other modules : sediment models, flow-obstruction models, biology models 79

Croco Documentation, Release 2.0.0

• l_slope_effect_bedload : set to .true. if accounting for slope effects in bedload fluxes (Lesser formulation)

• alphabs : coefficient for slope effects (default coefficients Lesser et al. [2004], alphabs = 1.)

• alphabn : coefficient for slope effects (default coefficients Lesser et al. [2004], default alphabn is 1.5 but
can be higher, until 5-10 (Gerald Herling experience))

• hmin_bedload : no bedload in u/v directions if h0+ssh <= hmin_bedload in neighbouring cells

• l_fsusp : limitation erosion fluxes of non-coh sediment in case of simultaneous bedload transport, according
to Wu & Lin formulations. Set to .true. if erosion flux is fitted to total transport should be set to .false. if
E0_sand_option=3 (Wu & Lin)

&namsedim_lateral_erosion : (see Lateral erosion)

• coef_erolat : slope effect multiplicative factor

• coef_tauskin_lat : parameter to evaluate the lateral stress as a function of the average tangential velocity on
the vertical

• l_erolat_wet_cell : set to .true in order to take into account wet cells lateral erosion

• htncrit_eros : critical water height so as to prevent erosion under a given threshold (the threshold value is
different for flooding or ebbing, cf. Hibma’s PhD, 2004, page 78)

&namsedim_consolidation :

• l_consolid : set to .true. if sediment consolidation is accounted for

• dt_consolid : time step for consolidation processes in sediment (will use in fact the min between dt_consolid,
dt_diffused if l_diffused, dt_bioturb if l_bioturb)

• subdt_consol : sub time step for consolidation processes in sediment (< or = min(dt_consolid, ..))(will use
in fact the min between subdt_consolid, subdt_bioturb if l_bioturb)

• csegreg : DO NOT CHANGE VALUE if not expert, default 250.0

• csandseg : DO NOT CHANGE VALUE if not expert, default 1250.0

• xperm1 : parameter to compute permeability permeability=xperm1*d50*d50*voidratio**xperm2

• xperm2 : parameter to compute permeability permeability=xperm1*d50*d50*voidratio**xperm2

• xsigma1 : parameter used in Merckelbach and Kranenburg [2004] formulation. DO NOT CHANGE VALUE
if not expert, default 6.0e+05

• xsigma2 : real, parameter used in Merckelbach and Kranenburg [2004] formulation. DO NOT CHANGE
VALUE if not expert, default 6

&namsedim_diffusion :

• l_diffused : set to .true. if taking into account dissolved diffusion in sediment and at the water/sediment
interface

• dt_diffused : time step for diffusion processes in sediment (will use in fact the min between dt_diffused,
dt_consolid if l_consolid, dt_bioturb if l_bioturb)

• choice_flxdiss_diffsed : choice for expression of dissolved fluxes at sediment-water interface

– 1 : Fick law : gradient between Cv_wat at dz(1)/2

– 2 : Fick law : gradient between Cv_wat at distance epdifi

• xdifs1 : diffusion coefficients within the sediment

• xdifsi1 : diffusion coefficients at the water sediment interface

• epdifi : diffusion thickness in the water at the sediment-water interface

• fexcs : factor of eccentricity of concentrations in vertical fluxes evaluation (.5 a 1) (numerical scheme for
dissolved diffusion/advection(by consol) in sediment)

&namsedim_bioturb :

80 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

• l_bioturb : set to .true. if taking into account particulate bioturbation (diffusive mixing) in sediment

• l_biodiffs : set to .true. if taking into account dissolved bioturbation diffusion in sediment

• dt_bioturb : time step for bioturbation processes in sediment (will use in fact the min between dt_bioturb,
dt_consolid if l_consolid, dt_diffused if l_diffused)

• subdt_bioturb : sub time step for bioturbation processes in sediment (< or = min(dt_bioturb, ..)) (will use
in fact the min between subdt_bioturb, subdt_consolid if l_consolid)

• xbioturbmax_part : max particular bioturbation coefficient by bioturbation Db (in surface)

• xbioturbk_part : coef (slope) for part. bioturbation coefficient between max Db at sediment surface and 0
at bottom

• dbiotu0_part : max depth beneath the sediment surface below which there is no bioturbation

• dbiotum_part : sediment thickness where the part-bioturbation coefficient Db is constant (max)

• xbioturbmax_diss : max diffusion coeffient by biodiffusion Db (in surface)

• xbioturbk_diss : coef (slope) for biodiffusion coefficient between max Db at sediment surface and 0 at
bottom

• dbiotu0_diss : max depth beneath the sediment surface below which there is no bioturbation

• dbiotum_diss : sediment thickness where the diffsolved-bioturbation coefficient Db is constant (max)

• frmud_db_min : mud fraction limit (min) below which there is no Biodiffusion

• frmud_db_max : mud fraction limit (max)above which the biodiffusion coefficient Db is maximum (muddy
sediment)

&namsedim_morpho :

• l_morphocoupl : set to .true if coupling module morphodynamic, see Morphodynamic

• MF : morphological factor : multiplication factor for morphological evolutions, equivalent to a “time accel-
eration” (morphological evolutions over a MF*T duration are assumed to be equal to MF * the morphological
evolutions over T).

• dt_morpho : time step for morphodynamic (s)

• l_MF_dhsed :

– set to .true. if morphodynamic applied with sediment height variation amplification

– set to .false. if morphodynamic is applied with erosion/deposit fluxes amplification

• l_bathy_actu : set to .true. if reading a new bathy issued a previous run and saved in filrepsed (given in
namelist namsedim_init) !!! NOT IMPLEMENTED YET !!!

&namtempsed : (only if !defined key_noTSdiss_insed)

• mu_tempsed1 : parameters used to estimate thermic diffusitiy function of mud fraction

• mu_tempsed2 : parameters used to estimate thermic diffusitiy function of mud fraction

• mu_tempsed3 : parameters used to estimate thermic diffusitiy function of mud fraction

• epsedmin_tempsed : sediment thickness limits for estimation heat loss at bottom, if hsed < epsed-
min_tempsed : heat loss at sediment bottom = heat flux a sediment surface

• epsedmax_tempsed : sediment thickness limits for estimation heat loss at bottom, if hsed > epsed-
max_tempsed : heat loss at sediment bottom = 0.

&namsedoutput :

• l_outsed_saltemp : set to .true. if output Salinity and Temperature in sediment

• l_outsed_flx_WS_all : set to .true. if output fluxes threw interface Water/sediment (2 2D variables per
constitutive particulate variable)

1.12. Other modules : sediment models, flow-obstruction models, biology models 81

Croco Documentation, Release 2.0.0

• l_outsed_flx_WS_int : set to .true. if output fluxes threw interface Water/sediment (integration on all con-
stitutive particulate variables)

• choice_nivsed_out : choice of saving output

– 1 : all the layers (ksdmin to ksdmax) are saved (k=1 : bottom layer) (nk_nivsed_out, ep_nivsed_out,
epmax_nivsed_out are not used)

– 2 : only save the nk_nivsed_out surficial layers (k=1 : layer most bottom)

– 3 : each layers from sediment surface are saved till the thickness epmax_nivsed_out (which must be
non zero and > dzsmax (k=1 : bottom layer)) This option is not recommended if l_dzsmaxuni=.False.

– 4 : 1 to 5 layers of constant thickness are saved; thickness are selected with ep_nivsed_out and concen-
trations are interpolated to describe the sediment thickness (k=1 : surface layer) the thickness of the
bottom layer (nk_nivsed_out+1) will vary depending on the total thickness of sediment in the cell

• nk_nivsed_out : number of saved sediment layers

– unused if choice_nivsed_out = 1

– <ksdmax if choice_nivsed_out = 2,

– unused if choice_nivsed_out = 3

– <6 if choice_nivsed_out = 4,

• ep_nivsed_out() : 5 values of sediment layer thickness (mm), beginning with surface layer (used if
choice_nivsed_out=4)

• epmax_nivsed_out : maximum thickness (mm) for output each layers of sediment (used if
choice_nivsed_out=3). Below the layer which bottom level exceed this thickness, an addition layer is an
integrative layer till bottom

&namsedim_debug :

• l_debug_effdep : set to .true. if print some informations for debugging MUSTANG deposition

• l_debug_erosion : set to .true. if print informations for debugging in erosion routines

• date_start_debug : string, starting date for write debugging informations

• lon_debug : define mesh location where we print these informations

• lat_debug : define mesh location where we print these informations

• i_MUSTANG_debug : indexes of the mesh where we print these informations (only if lon_debug and
lat_debug = 0.)

• j_MUSTANG_debug : indexes of the mesh where we print these informations (only if lon_debug and
lat_debug = 0.)

&namflocmod :

• l_ADS : set to .true. if aggregation by differential settling

• l_ASH : set to .true. if aggregation by shear

• l_COLLFRAG : set to .true. if fragmentation by collision

• f_dp0 : primary particle size (default 4.e-6 m)

• f_nf : fractal dimension (default 2.0, usual range from 1.6 to 2.8)

• f_nb_frag : nb of fragments of equal size by shear fragmentation (default 2.0 as binary fragmentation)

• f_alpha : flocculation efficiency parameter (default 0.15)

• f_beta : floc break up parameter (default 0.1)

• f_ater : ternary fragmentation factor : proportion of flocs fragmented as half the size of the initial binary
fragments (0.0 if full binary fragmentation, 0.5 if ternary fragmentation)

• f_ero_frac : floc erosion (% of floc mass eroded) (default 0.05)

82 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

• f_ero_nbfrag : nb of fragments produced by erosion (default 2.0)

• f_ero_iv : fragment class (mud variable index corresponding to the eroded particle size - typically 1)

• f_mneg_param: negative mass after flocculation/fragmentation allowed before redistribution (default 0.001
g/l)

• f_dmin_frag : minimum diameter for fragmentation (default 10e-6 microns)

• f_cfcst : fraction of mass lost by flocs if fragmentation by collision .. (default : =3._rsh/16._rsh)

• f_fp : relative depth of inter particle penetration (default =0.1) [McAnally, 1999]

• f_fy : floc yield strength (default= 1.0e-10) [Winterwerp et al., 2002]

• f_collfragparam : fraction of shear aggregation leading to fragmentation by collision (default 0.0, must be
less than 1.0)

1.12.2.2.2.5 Input file : Initialization of the sediment cover

If the initialization of sediment bed is not uniform (spatially and vertically), the sediment cover is read from a
netcdf file (see Initialization for more details).

This netcdf file path is given in MUSTANG namelist &namsedim_init as follow:

l_repsed=.true.
filrepsed='./repsed.nc'

The netcdf file needs to have the concentration values under the names NAME_sed, with NAME corresponding to
the names defined in the SUBSTANCE namelist. The number of vertical levels (ksmi, ksma) and the layer thickness
(DZS) also need to be defined. The file structure is similar to the RESTART netcdf file, and filerepsed can be used
to restart from a CROCO RESTART file (same format).

Header of an example sediment cover file:

dimensions:
ni = 821 ;
nj = 623 ;
time = UNLIMITED ; // (1 currently)

level = 10 ;
variables:

double latitude(nj, ni) ;
double longitude(nj, ni) ;
double time(time) ;
double level(level) ;
double ksmi(time, nj, ni) ;
double ksma(time, nj, ni) ;
double DZS(time, level, nj, ni) ;
double temp_sed(time, level, nj, ni) ;
double salt_sed(time, level, nj, ni) ;
double GRAV_sed(time, level, nj, ni) ;
double SAND_sed(time, level, nj, ni) ;
double MUD1_sed(time, level, nj, ni) ;

1.12. Other modules : sediment models, flow-obstruction models, biology models 83

Croco Documentation, Release 2.0.0

1.12.2.2.2.6 Input file : Wave

If cpp keys WAVE_OFFLINE and MUSTANG are activated, a netcdf file must be given in CROCO input file
croco.in as follow:

wave_offline: filename
wave.nc

Significant wave height, wave period, wave direction and bottom orbital velocity are read in this netcdf file. Note
that the significant wave height (or wave amplitude) has to be given as for now but is not used to compute the bed
shear stress.

The netcdf file should have a temporal window at leats covering the simulation period. Temporal interpolation are
made between each time step in the file. If your configuration contains wetting-drying effect, be careful with
values on land, do not put negative values. We advice you to put 0. for hs, dir and ubr and 10 for t01 (to avoid
division by zero).

Header of an example wave file:

dimensions:
wwv_time = UNLIMITED ; // (25 currently)
eta_rho = 132 ;
xi_rho = 182 ;

variables:
double dir(wwv_time, eta_rho, xi_rho) ;

dir:_FillValue = 0s ;
double hs(wwv_time, eta_rho, xi_rho) ;

hs:_FillValue = 0s ;
double t01(wwv_time, eta_rho, xi_rho) ;

t01:_FillValue = 10s ;
double ubr(wwv_time, eta_rho, xi_rho) ;

ubr:_FillValue = 0s ;
double uubr(wwv_time, eta_rho, xi_rho) ;

uubr:_FillValue = 0s ;
double vubr(wwv_time, eta_rho, xi_rho) ;

vubr:_FillValue = 0s ;
double wwv_time(wwv_time) ;

1.12.2.2.2.7 Input file : Solid discharge in rivers

If cpp keys PSOURCE_NCFILE and PSOURCE_NCFILE_TS are activated, a netcdf file must be given in
CROCO input file croco.in as follow:

psource_ncfile: Nsrc Isrc Jsrc Dsrc qbardir Lsrc Tsrc runoff file name
psource.nc

2
167 56 0 -1 30*T 20.0 15.0 Loire
91 99 0 -1 30*T 20.0 15.0 Vilaine_arzal

This file is in netcdf format. It reads the concentration values (T,S and sediment) in get_psource_ts.F.

The name of sediment variable must match the name chosen in SUBSTANCE namelist, in the example below :
MUD1.

Header of an example source file:

dimensions:
qbar_time = 7676 ;

(continues on next page)

84 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

(continued from previous page)

n_qbar = 6 ;
runoffname_StrLen = 30 ;
temp_src_time = 8037 ;
salt_src_time = 8037 ;
MUD1_src_time = 7676 ;

variables:
double qbar_time(qbar_time) ;

qbar_time:long_name = "runoff time" ;
qbar_time:units = "days" ;
qbar_time:cycle_length = 0 ;
qbar_time:long_units = "days since 1900-01-01" ;

double Qbar(n_qbar, qbar_time) ;
Qbar:long_name = "runoff discharge" ;
Qbar:units = "m3.s-1" ;

char runoff_name(n_qbar, runoffname_StrLen) ;
double temp_src_time(temp_src_time) ;

temp_src_time:cycle_length = 0 ;
temp_src_time:long_units = "days since 1900-01-01" ;

double salt_src_time(salt_src_time) ;
salt_src_time:cycle_length = 0 ;
salt_src_time:long_units = "days since 1900-01-01" ;

double temp_src(n_qbar, temp_src_time) ;
temp_src:long_name = "runoff temperature" ;
temp_src:units = "Degrees Celcius" ;

double salt_src(n_qbar, salt_src_time) ;
salt_src:long_name = "runoff salinity" ;
salt_src:units = "psu" ;

double MUD1_src_time(MUD1_src_time) ;
MUD1_src_time:long_name = "runoff time" ;
MUD1_src_time:units = "days" ;
MUD1_src_time:long_units = "days since 1900-01-01" ;

double MUD1_src(n_qbar, MUD1_src_time) ;

1.12.2.2.2.8 Input file : submassbalance definition of borders and budget areas

The name of this file is set in nmlsubmassbalance.

This feature permits to compute mass fluxes and/or budget during the simulation on areas (closed domain) or
passing though boundaries (open domain).

Boundaries are defined by several contiguous segments S-N and/or W-E (any number of segments and any direction
(S-N or N-S, WE or E-W).

An example of submassbalance input file is :

1
test
F
2
10 100 45 N
100 45 60 E

2
test2
T

(continues on next page)

1.12. Other modules : sediment models, flow-obstruction models, biology models 85

Croco Documentation, Release 2.0.0

(continued from previous page)

4
50 60 50 S
60 50 80 E
60 50 80 N
50 80 50 W

Each segment is separate by a line (here containing `*****`).

Then the file contains :

• the number of the border

• the name of the border

• a boolean set to True if the border is a closed polygon

• the number of segment of the border

• the list of segment border (number of lines correspond to the number of segment of the border)

1 ! number of the border
test ! name of the border
F ! boolean set to true for closed domain
2 ! number of segment of the border
10 100 45 N ! segment description
100 45 60 E ! segment description

...

Each segment is characterized by 3 indices and a letter N, S, W or E to determine whether this border is a north,
south, west or east segment of the sub-domain.

For north and south segments, the 3 indices are i_start i_end j.

For west and east segments, the 3 indices are i j_start j_end.

Open boundaries are assigned FIRST and closed boundaries next.

For an open boundary, E,W,S,N give the direction of flow.

For a closed sub-domain : “East” segments are borders placed at the east of the closed area. “South” segments are
borders placed at the south of the area etc. . . Budgets are computed only inside sub-domains surrounded by closed
boundaries.

You can verify your domains masks in the output file see mustang_submassbalance_outputfile.

86 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.12.2.2.2.9 Output options

Outputs for sediment variables are written by CROCO not MUSTANG, using routines that have been modified on
purpose (e.g. wrt_his.F):

• Classic Netcdf outputs with suspended sediment concentrations and various variables within the sed-
iment bed (NB_LAY_SED, HSED, thickness DZS, shear stress TAUSKIN, concentration in sediment
bed for each sediment (*_sed), temperature and salinity in sediment bed (temp_sed and salt_sed)). Use
#key_MUSTANG_specif_outputs to add more sediment variables in this file. NB : For now, it is not pos-
sible to select only a few variable for output.

• Station files (#define STATIONS) only record suspended sediment concentrations. Sediment bed variables
are not implemeted yet.

• XIOS (#define XIOS) can be configured to output both suspended sediment concentrations and sediment
bed variables.

1.12.2.2.2.10 Available CPP keys

The compulsory CPP keys to use MUSTANG in CROCO:

• MUSTANG : activate module MUSTANG

• SUBSTANCE : activate module SUBSTANCE

• SALINITY : needed for SUBSTANCE

• TEMPERATURE : needed for SUBSTANCE

• USE_CALENDAR : needed for MUSTANG, issue with MUSTANG coupling timing otherwise

• key_noTSdiss_insed : temperature, salinity and others dissolved variables are not computed in sediment.
They have constant values and no fluxes of dissolved variables between water and sediment are computed.

• key_nofluxwat_IWS : no exchange water fluxes between water and sediment (recommended if
key_noTSdiss_insed).

The optional CPP keys, to choose processes or version:

• key_MUSTANG_V2 : to use MUSTANG in V2, without this key, the version V1 is used

• MORPHODYN : to activate morphodynamic (l_morphocoupl must also be set to .true, see Morphody-
namic)

• SED_DENS : to activate the effect of suspended sediment on the density, see Effect on density

1.12. Other modules : sediment models, flow-obstruction models, biology models 87

Croco Documentation, Release 2.0.0

• key_sand2D : to treat SAND in suspension as 2D variable, see Treatment of high settling velocities : SAND
variables

• MUSTANG_CORFLUX : to correct SAND horizontal fluxes, see Treatment of high settling velocities :
SAND variables

• WAVE_OFFLINE : to use wave in bed shear stress computation, see wave skin friction

• key_MUSTANG_flocmod : to activate module floculation (FLOCMOD)

• SUBSTANCE_SUBMASSBALANCE : to activate submassbalance computing (SUBMASSBALANCE)

• key_tauskin_c_upwind : Upwind scheme for current-induced bottom shear stress, see Shear stress

• key_tauskin_c_center : Compute bottom shear stress with 𝑢* directly at (rho) location (center of the cell),
see Shear stress

• key_tauskin_c_ubar : Shear stress computed form depth-averaged velocity, see Shear stress

• PSOURCE_NCFILE and PSOURCE_NCFILE_TS : to read solid discharge in river from netcdf files

• key_MUSTANG_slipdeposit : see Sliding fluxes

• key_MUSTANG_lateralerosion : see Lateral erosion

• key_MUSTANG_splitlayersurf : cutting of surface sediment layers to have regular and precise discretiza-
tion at surface

• key_MUSTANG_specif_outputs : output more diagnostics variables

• key_MUSTANG_bedload : only with key_MUSTANG_V2, bedload processus included

• key_MUSTANG_debug : only with key_MUSTANG_V2, choice print information during erosion or de-
posit process. Does not work in MPI print a lot of variable during run for debugging choice of coordinates
of the point to be checked

The following CPP keys are not yet available with CROCO :

• key_MUSTANG_add_consol_outputs, only with key_MUSTANG_V2 : outputs more diagnostics variables
related to consolidation

1.12.2.2.3 MUSTANG technical documentation

1.12.2.2.3.1 Overall architecture of the module

To compute sediment behavior, MUSTANG execute the steps :

• Initialization of sediment variables from input files

• Temporal loop with a sequence of forcing update, erosion phase, exchange between sediment and water,
deposition phase, morphodynamic update and call to output feature

MUSTANG module is integrated into CROCO code. It is composed of 14 elements added to the existing code in
a MUSTANG directory. The interface between the sedimentary module and the hydrodynamic code is done via :

• plug_MUSTANG_CROCO.F90 which makes the 4 main subroutines available to the rest of the code :

– mustang_init_main : initialization

– mustang_update_main : update of forcing and erosion phase

– mustang_deposition_main : deposition phase

– mustang_morpho_main : to apply morphodynamic

• modification of CROCO files :

– Initialization in main.F

– Main calls in step.F

88 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

– Treatment of settling and sediment/water exchanges in step3d_t.F

– Input features in read_inp.F

– Output features in : XIOS/send_xios_diags.F, OCEAN/wrt_his.F, OCEAN/wrt_rst.F,
OCEAN/wrt_sta.F, OCEAN/nc_sta.h, OCEAN/ncscrum.h, OCEAN/nf_read.h, OCEAN/fillvalue.F,
step_sta.F, sta.h

– Wave forcing in OCEAN directory in files : forces.h, get_vbc.F, get_wwave.F, init_arrays.F,
init_scalars.F

– Test cases in OCEAN/ana_grid.F and OCEAN/ana_initial.F

– Compilation and dimension in OCEAN directory in files : Makefile, jobcomp, param.h, cppdefs.h,
cppdefs_dev.h

Roughly, all sediment calculations are done in the MUSTANG fortran files, except for the advection part which is
intimately linked to step3d_t.F. Modifications in CROCO files are mostly for I/O features or test cases analytical
forcing.

1.12.2.2.3.2 Initialization

The initialization must be done for water column variables and sediment bed variables.

In the water column, the initialization is done from initial file if provided (see hydrodynamic code). If there is no
initial file, the water concentrations are initialized from uniform value in SUBSTANCE namelist.

To initialize the sediment cover, two options are available :

• Uniform sediment cover

In paraMUSTANG*.txt:

l_unised = .true. ! boolean set to true for a uniform bottom initialization
hseduni = 0.03 ! initial uniform sediment thickness(m)
cseduni= 1500.0 ! initial sediment concentration
csed_mud_ini = 550.0 ! mud concentration into initial sediment (if = 0. ==>␣
→˓csed_mud_ini = cfreshmud)
ksmiuni = 1 ! lower grid cell indices in the sediment
ksmauni = 10 ! upper grid cell indices in the sediment

And then, the fraction of each sediment variable in the seafloor is defined with cini_sed_n() in parasub-
sance_MUSTANG.txt

• Read the sediment cover from a netcdf file (format of a RESTART file, see input file for sediment cover)

Warning:
• The restarts are not perfect restarts. To do a perfect restart, you will need to save the erosion and

deposition fluxes in a restart file, as was done in MARS3D (cf. subroutine sed_outsaverestart in
sed_MUSTANG_CROCO.F90). This has not been implemented yet.

• Further, it will not work for morphological runs as you will need to make a few changes to read the
bathymetry from the filerepsed file.

1.12. Other modules : sediment models, flow-obstruction models, biology models 89

Croco Documentation, Release 2.0.0

1.12.2.2.3.3 Temporal loop

In the temporal loop of CROCO model, the main calls to MUSTANG routines are in step3D_t_thread.

call prestep3D_thread()
call step2d_thread()
call step3D_uv_thread()
call step3D_t_thread()
----> call mustang_update_main()
----> call step3d_t
-----------------> # include "t3dmix_tridiagonal_settling.h"
----> CALL mustang_deposition_main
----> CALL mustang_morpho_main

The erosion and deposition phases are sequenced at each time step:

• erosive phase is treated before the call to step3d_t (treatment of vertical advection). This phase contains:

– calculation of the roughness and bottom shear stress,

– calculation of the erosion fluxes for each class

– evolution of the sedimentary bed from erosion : erosion layer managment

– calculation of the tendency to deposition deposit fluxes.

• exchanges from the water column point of view are processed in step3d_t via “t3dmix_tridiagonal_settling.h”
and compute also the effective deposit fluxes

• deposit step is processed after the call to step3d_t. This phase includes

– calculation of the deposit for each class,

– evolution of the sedimentary bed : deposition layer managment

• morphodynamic coupling.

The calculations are carried out cell by cell by considering most of the sedimentary variables at the center of the
cell. The majority of the calculations are therefore carried out in 1DV. Certain calculations must however be carried
out taking into account the adjacent meshes:

• calculate skin stress has current are computed on the mesh edges

• calculate the slope of the bottom and the coefficients necessary to take into account its effect on transport by
bedload

• calculate the correction of horizontal sand fluxes

• calculate the fluxes entering a cell induced by bedload and suspension transport

TODO : add a scheme to explain the two main phases : erosion/deposit

1.12.2.2.3.4 Roughness length

Mustang use grain roughness length to evaluate moving conditions of particles.

Mustang can also compute a form roughness length to account of ripple effect on flow and transmit it to the
hydrodynamic code (here CROCO)

The grain roughness length could be :

• constant in time and uniform in space with l_z0seduni = .TRUE., in this case, the skin roughness length is
equal to z0seduni namelist value (see namelist namsedim_bottomstress)

• variable in time and space with l_z0seduni = .FALSE., in this case, the skin roughness length is computed
at each time step from sediment bed composition in each cell (i,j) :

90 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

– if bathymetry is not defined in the cell : z0sed = z0sedmud (see z0sedmud in namsedim_bottomstress)
(to avoid division by zero in skinstress evaluation when neighbour cells are used)

– if bathymetry is defined in the cell :

∗ if sediment is not present, then z0sed = z0sedbedrock (see z0sedbedrock in
namsedim_bottomstress)

∗ if sediment is present,

· if there is only mud in the superficial layer z0sed = z0seduni

· if there is sand or gravel, Nikuradse formulation is used (z0sed = diam/12) with diam corre-
sponding to the ponderate sum of gravel and sand diameter

𝑑𝑖𝑎𝑚 =
∑︀𝑖𝑠𝑎𝑛𝑑2
𝑛=𝑖𝑔𝑟𝑎𝑣1 𝑐𝑣𝑠𝑒𝑑(𝑛, 𝑘𝑚𝑎𝑥)/𝑐𝑠𝑒𝑑𝑡𝑜𝑡(𝑛, 𝑘𝑚𝑎𝑥) * 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝑛)

The form roughness length is computed and sent to CROCO only if l_z0hydro_coupl (at each time step) or
l_z0hydro_coupl_init (just at initialization) :

• if there is no sediment, z0hydro = z0_hydro_bed (see z0_hydro_bed in namsedim_bottomstress)

• if there is sediment :

– if there is more than 30% of mud in the first centimeter of sediment, z0hydro = z0_hydro_mud (see
z0_hydro_mud in namsedim_bottomstress)

– else the ponderate diameter of sand is used and z0hydro = coef_z0_coupl * ponderate diameter of sand
(see coef_z0_coupl in namsedim_bottomstress). Note that gravel are not taking into account here

1.12.2.2.3.5 Shear stress

The shear stress skin friction is computed following steps :

• compute current skin friction

• if cpp keys WAVE_OFFLINE is activated, compute wave skin friction

• if cpp keys WAVE_OFFLINE is activated, compute combination between current and wave skin friction

Current skin friction
Current skin friction is computed from the friction velocity using a logarithmic profile. The friction velocity 𝑢*
is computed from roughness length z0 and current component (bottom (u,v) or barotropic (ubar,vbar) using a
logarithmic profile :

𝑢* = 𝜅·
√
𝑢2+𝑣2

𝑙𝑛(𝑧
𝑧0)

with 𝑧, height of the bottom cell.

or

𝑢* = 𝜅·
√
𝑢𝑏𝑎𝑟2+𝑣𝑏𝑎𝑟2

𝑙𝑛(𝑧
𝑒·𝑧0)

with 𝑧, the water height.

Current skin friction is compute using : 𝑡𝑎𝑢𝑠𝑘𝑖𝑛_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝜌𝑤 · (𝑢*)2

The following option are available via cpp keys :

• default : compute 𝑢* components at (u,v) locations first and then at the center of the cell. This option use
12 points of current components (see figure below).

• key_tauskin_c_center : compute 𝑢* directly at (rho) location (center of the cell) using immediate u,v com-
ponents. This option use 4 points of current components (see figure below).

• key_tauskin_c_ubar : compute 𝑢* using ubar,vbar value instead of bottom layer u,v values.

• key_tauskin_c_upwind : depending on current direction, use only component upwind (not combinable with
key_tauskin_c_center). This option use 8 to 12 points of current components (see figure below).

• BBL : computation is done via BBL module of CROCO using constant roughness (from 160 microns diam-
eter). This option is not recommended with MUSTANG due to constant roughness.

1.12. Other modules : sediment models, flow-obstruction models, biology models 91

Croco Documentation, Release 2.0.0

92 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Wave skin friction
Wave skin friction is computed using Soulsby (1997) formula.

𝑡𝑎𝑢𝑠𝑘𝑖𝑛_𝑤𝑎𝑣𝑒 = 1
2 · 𝜌𝑤 · 𝑓𝑤 · 𝑈𝑤𝑎𝑣𝑒

2

With

• 𝑓𝑤 equal to fricwav namelist namsedim_bottomstress value or computed from WAVE_OFFLINE file vari-
ables (𝑈𝑤𝑎𝑣𝑒 and𝑃𝑤𝑎𝑣𝑒) and roughness if l_fricwave namelist namsedim_bottomstress value is True using
𝑓𝑤 = 1.39 · (𝑈𝑤𝑎𝑣𝑒·𝑃𝑤𝑎𝑣𝑒2·𝜋·𝑧0𝑠𝑒𝑑)−0.52

• 𝑈𝑤𝑎𝑣𝑒 and 𝑃𝑤𝑎𝑣𝑒 reading from WAVE_OFFLINE file

Combinaison of current and wave stresses
Combinaison of current and wave stresses is done from Soulsby [1997] (Dynamics of marine sands - eq.69 and 70
page 92), 𝑡𝑎𝑢𝑠𝑘𝑖𝑛 equal to 𝑡𝑎𝑢_𝑚𝑎𝑥

𝑡𝑎𝑢_𝑚𝑒𝑎𝑛 = 𝑡𝑎𝑢𝑠𝑘𝑖𝑛_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ·
(︂

1 + 1.2 ·
(︁

𝑡𝑎𝑢𝑠𝑘𝑖𝑛_𝑤𝑎𝑣𝑒
𝑡𝑎𝑢𝑠𝑘𝑖𝑛_𝑐𝑢𝑟𝑟𝑒𝑛𝑡+𝑡𝑎𝑢𝑠𝑘𝑖𝑛_𝑤𝑎𝑣𝑒

)︁3.2)︂
𝑡𝑎𝑢_𝑚𝑎𝑥 =

√︁
(𝑡𝑎𝑢_𝑚𝑒𝑎𝑛+ 𝑡𝑎𝑢𝑠𝑘𝑖𝑛_𝑤𝑎𝑣𝑒 · |𝑐𝑜𝑠(𝑝ℎ𝑖)|)2 + (𝑡𝑎𝑢𝑠𝑘𝑖𝑛_𝑤𝑎𝑣𝑒 · |𝑠𝑖𝑛(𝑝ℎ𝑖)|)2

With 𝑝ℎ𝑖 angle between current and wave.

Note: abs() is used on cos() and sin() because of alternative direction of tau_w in the vector addition of tau_c and
tau_w (see Soulsby [1997] (Dynamics of marine sands - figure 16 page 89))

1.12.2.2.3.6 Settling

The settling process is taken into account during the advection-diffusion scheme in the water column and in the
exchange from water to sediment via the deposit fluxes.

Settling velocity modelling strategy
The settling velocity is the main variable of the settling process and is moddelled differently for each substance
type :

• GRAV : gravels are not transported in suspension, they have no settling velocity because they are not in the
water column

• SAND : sands have a constant settling velocity directly compute from Soulsby [1997] using their diameters
defined in SUBSTANCE namelist &nmlsands (diam_n).

𝑊𝑠 = 10−6 · (107.33+1.049·𝐷𝑠𝑡𝑎𝑟3)0.5−10.36
𝐷

1.12. Other modules : sediment models, flow-obstruction models, biology models 93

Croco Documentation, Release 2.0.0

With𝐷𝑠𝑡𝑎𝑟 = 𝐷 ·104 · (𝑔 · (𝜌𝑠𝜌𝑤 −1))
1
3 the dimensionless diameter of sediment and D diameter of sediment

class, 𝜌𝑤 water density and 𝜌𝑠 sediment density.

The resulting settling velocity could be high.

• MUD and Non Constitutive Particulate subtances : the settling velocity can vary in time and space depending
on the parameters chosen by user in SUBSTANCE namelist &nmlmuds: ws_free_opt_n(), ws_free_min_n(),
ws_free_max_n(), ws_free_para_n(1:4,num substance), ws_hind_opt_n(), ws_hind_para_n(1:2,num sub-
stance)) or by cpp key for flocculation module (see Flocculation)

If flocculation module is not used, settling velocity is the result of the choice on ws_free_opt_n and
ws_hind_opt_n values in SUBSTANCE namelist &nmlmuds and is computed for every cell “i,j” and layer
“k” in the water domain.

𝑊𝑠 = 𝑚𝑎𝑥(𝑤𝑠_𝑓𝑟𝑒𝑒_𝑚𝑖𝑛_𝑛 ; 𝑚𝑖𝑛(𝑤𝑠_𝑓𝑟𝑒𝑒_𝑚𝑎𝑥_𝑛 ; 𝑊𝑠𝑓𝑟𝑒𝑒 ·𝐻𝑖𝑛𝑑))

See appropriate chapters for details on free settling velocity and hindered settling parameter.

• Sorbed substances : the settling velocity of sorbed substance is the same as the particulate susbtance to which
it is associated

• Dissolved and fixed substances : no settling velocity

Free settling velocity
𝑊𝑠𝑓𝑟𝑒𝑒 the free settling velocity is computed from :

• if ws_free_opt_n = 0 : constant value, 𝑊𝑠𝑓𝑟𝑒𝑒 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑚𝑖𝑛_𝑛

• if ws_free_opt_n = 1 : formulation of van Leussen [1994], 𝑊𝑠𝑓𝑟𝑒𝑒 = 𝑘𝐶𝑚 · 1+𝑎𝐺
1+𝑏𝐺2

With :

– 𝑘 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑝𝑎𝑟𝑎_𝑛(1) (= 0.0005 in the reference)

– 𝑚 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑝𝑎𝑟𝑎_𝑛(2) (= 1.2 in the reference)

– 𝑎 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑝𝑎𝑟𝑎_𝑛(3) (= 0.3 in the reference)

– 𝑏 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑝𝑎𝑟𝑎_𝑛(4) (= 0.09 in the reference)

– 𝐶 = Sum of concentration of MUD substances in the layer

94 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

– 𝐺 =
√︁

𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒
𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = turbulence energy

• if ws_free_opt_n = 2 : formulation of Winterwerp [1999], 𝑊𝑠𝑓𝑟𝑒𝑒 = 1
18 ·

(𝜌𝑠−𝜌𝑤)𝑔
𝜌𝑤𝜈

·𝐷𝑝3−𝑛𝑓 ·𝐷𝑒𝑛𝑓−1

With :

– 𝐷𝑒 = 𝑚𝑎𝑥(𝐷𝑝+ 𝑘𝑎·𝐶
𝑘𝑏·

√
𝐺

;
√︀

𝜈
𝐺)

– 𝐷𝑝 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑝𝑎𝑟𝑎_𝑛(1) = Primary Particle Diameter, (= 4.10-6 in the reference)

– 𝑘𝑎 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑝𝑎𝑟𝑎_𝑛(2) = aggregation factor, (= 14.6 in the reference)

– 𝑘𝑏 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑝𝑎𝑟𝑎_𝑛(3) = breakup factor, (= 30000 in the reference)

– 𝑛𝑓 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑝𝑎𝑟𝑎_𝑛(4) = fractal dimension, (= 2 in the reference)

– 𝐶 = Sum of concentration of MUD substances in the layer

– 𝐺 =
√︁

𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒
𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = turbulence energy

– 𝜈 = 0.00000102 𝑚2/𝑠 = water kinematic viscosity

– 𝑔 = gravity

– 𝜌𝑠 = sediment density

– 𝜌𝑤 = water density

• if ws_free_opt_n = 3 : formulation of Wolanski et al. [1989], 𝑊𝑠𝑓𝑟𝑒𝑒 = 𝑘𝐶𝑚

With :

– 𝑘 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑝𝑎𝑟𝑎_𝑛(1) (= 0.01 in the reference)

– 𝑚 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑝𝑎𝑟𝑎_𝑛(2) (= 2.1 in the reference)

– 𝐶 = Sum of concentration of MUD substances in the layer

Hindered settling parameter
𝐻𝑖𝑛𝑑 the hindered settling parameter is computed from :

• if ws_hind_opt_n = 0 : no hindered effect, 𝐻𝑖𝑛𝑑 = 1

• if ws_hind_opt_n = 1 : formulation of Scott, 1984, 𝐻𝑖𝑛𝑑 = (1− 𝜑)𝑚

With :

– 𝜑 = 𝑚𝑖𝑛(1 ; 𝐶
𝑐𝑔𝑒𝑙)

– 𝐶 = Sum of concentration of MUD substances in the layer

– 𝑐𝑔𝑒𝑙 = 𝑤𝑠_ℎ𝑖𝑛𝑑_𝑝𝑎𝑟𝑎_𝑛(1) (= 40 in the reference)

– 𝑚 = 𝑤𝑠_ℎ𝑖𝑛𝑑_𝑝𝑎𝑟𝑎_𝑛(2) (= 4.5 in the reference)

• if ws_hind_opt_n = 2 : formulation of Winterwerp et al. [2002], 𝐻𝑖𝑛𝑑 = (1− 𝜑𝑣)𝑚 · (1−𝜑)
(1+2.5𝜑𝑣)

With :

– 𝜑 = 𝐶
𝜌𝑠

– If ws_free_opt_n is not 2 then 𝜑𝑣 = 𝐶
𝑐𝑔𝑒𝑙

– If ws_free_opt_n is 2 then 𝜑𝑣 = 𝜑 · (𝐷𝑒𝐷𝑝)3−𝑛𝑓

∗ 𝐷𝑒 = 𝑚𝑎𝑥(𝐷𝑝+ 𝑘𝑎·𝐶
𝑘𝑏·

√
𝐺

;
√︀

𝜈
𝐺)

∗ 𝐷𝑝 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑝𝑎𝑟𝑎_𝑛(1) = Primary Particle Diameter, (= 4.10-6 in the reference)

∗ 𝑛𝑓 = 𝑤𝑠_𝑓𝑟𝑒𝑒_𝑝𝑎𝑟𝑎_𝑛(4) = fractal dimension, (= 2 in the reference)

– 𝑐𝑔𝑒𝑙 = 𝑤𝑠_ℎ𝑖𝑛𝑑_𝑝𝑎𝑟𝑎_𝑛(1) (= 40 in the reference)

1.12. Other modules : sediment models, flow-obstruction models, biology models 95

Croco Documentation, Release 2.0.0

– 𝑚 = 𝑤𝑠_ℎ𝑖𝑛𝑑_𝑝𝑎𝑟𝑎_𝑛(2) (= 1 in the reference)

– 𝐶 = Sum of concentration of MUD substances in the layer

– 𝜌𝑠 = sediment density

• if ws_hind_opt_n = 3 : formulation of Wolanski et al. [1989], this formulation has to be combined with
ws_free_opt_n = 3.

If ws_free_opt_n is not 3 then no hindered effect 𝐻𝑖𝑛𝑑 = 1

If ws_free_opt_n is 3 then 𝐻𝑖𝑛𝑑 = 1
(𝐶2+𝑏2𝑤)𝑚𝑤

With :

– 𝑏𝑤 = 𝑤𝑠_ℎ𝑖𝑛𝑑_𝑝𝑎𝑟𝑎_𝑛(1) (= 2 in the reference)

– 𝑚𝑤 = 𝑤𝑠_ℎ𝑖𝑛𝑑_𝑝𝑎𝑟𝑎_𝑛(2) (= 1.46 in the reference)

– 𝐶 = Sum of concentration of MUD substances in the layer

Treatment of high settling velocities : SAND variables
For high settling velocities, the major part of the sediment are concentrated in a thin layer near bottom. The
thickness of the bottom layer in water could be unadapted to represent correctly the concentration at bottom. This
could lead to an underestimation of deposit fluxes and horizontal transport fluxes.

Furthermore, to avoid numerical instabilities, vertical transport is computed using sub time steps. The number of
sub time steps depends on the settling velocity of each substance. For high settling velocities, this could be time
consuming.

In MUSTANG, these issues are considered for SAND variables only. It is considered that MUD have too low
settling velocities and GRAVEL are not transported in suspension.

That is why three features have been developped for SAND variables in MUSTANG to treat these issues :

• vertical deposit fluxes are corrected considering a Rouse profile in the bottom layer in water. The concen-
tration is extrapolated at a given reference height (parameter aref_sand of MUSTANG namelist) to obtain a
correct deposit flow.

• horizontal advection fluxes could, as an option, be corrected considering a Rouse profile of concentra-
tion and the current logarithmic gradient near bottom. This option is activated by the cpp key MUS-
TANG_CORFLUX

• SAND sediments could, as an option, be considered as 2D variables with the cpp key key_sand2D. When
this ccp key key_sand2D is activated, a boolean l_sand2D in SUBSTANCE namelist &nmlsands specify for
each SAND substance if it has to be treated as a 2D variable and not 3D. This option makes it possible to
treat the fall of SAND-type sediments by considering that the transport in suspension only takes place in the
bottom layer (2D sand transport in a single layer). This makes it possible to skip the vertical transport and
mixing for this susbtance and save calculation time. As an option (l_outsandrouse in SUBSTANCE namelist
&nmlsands), the Rouse profile is reconstructed in the outputs.

The Rouse profile used in those three features involves the ratio Ws/u* to calculate the Rouse number (Z in the
formulation below). The formulations used are those proposed by Julie Vareilles (activity report of the post-
doctorate Consequences of Climate Change on Ecogeomorphology of Estuaries, March 2013)

Rouse profile:

𝐶(𝑧) = 𝐶(𝑎) · (ℎ−𝑧𝑧 ·
𝑎
𝑧−𝑎)𝑍

With :

• 𝑎 : reference height

• ℎ : water height

• 𝑍 : Rouse number

For 𝑊𝑠

𝑢*
< 0.1 : 𝛽 = 1, 𝑍 = 𝑊𝑠

𝜅·𝑢*

For 0.1 <= 𝑊𝑠

𝑢*
< 0.75 : 𝛽 = 1 + 2(𝑊𝑠

𝑢*
)2, 𝑍 = 𝑊𝑠

𝛽·𝜅·𝑢*

96 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

For 0.75 <= 𝑊𝑠

𝑢*
< 1.34 : 𝑍 = 0.35𝑊𝑠

𝑢*
+ 0.727

For 1.34 <= 𝑊𝑠

𝑢*
: 𝑍 = 1.2

1.12.2.2.3.7 Flocculation with FLOCMOD

Introduction
Suspended particulate matter (SPM) dynamics in estuaries and coastal seas is driven by flocculation processes.
These processes modify floc sizes and floc densities, and hence their settling velocity. This parameter is crucial
when modelling SPM transport in coastal systems. It can be set as a constant value, or evaluated though an empirical
function (such as Van Leussen relationship, see settling velocity chapter) to mimic flocculation dynamics with
processes “at equilibrium”.

FLOCMOD is a 0D size-class-based module developed by Ifremer to simulate the explicitly flocculation processes
(See Verney et al. [2011]). It based on the population equation system originally proposed by Smoluchowski
[1917]. As a size class-based model, this means that the floc size distribution is represented by a discrete number
of sediment classes of increasing sizes. This module simulates the effect of turbulence and SPM concentration and

1.12. Other modules : sediment models, flow-obstruction models, biology models 97

Croco Documentation, Release 2.0.0

flocculation processes, and uses the fractal approach to represent main floc properties (floc density, floc mass, floc
settling velocity).

Future developments are scheduled to include seasonal variability in organic matter content and hence modulate
flocculation processes, and floc resistance to breakup for instance.

Module description
FLOCMOD in CROCO
FLOCMOD is available in CROCO using the SEDIMENT (USGS) module or the MUSTANG module. Using
MUSTANG, FLOCMOD is activated with the cppkey #key_mustang_flocmod. The MUSTANG specific cpp-
keys must also be activated.

Floc size classes are defined as mud types in SUBSTANCE namelist parasubstance_MUSTANG.txt. The floc diam-
eter in the namelist correspond to the floc size of the given class. Update the number of sediment classes in param.h
(ntrc_sub) accordingly. You may also update obc and input files and sediment initial distribution file if you want to
prescribe a specific floc size distribution from rivers or open boundary conditions. Floc sizes are discrete classes,
which means that floc created by aggregation or fragmentation is redistributed along the two nearest classes (in
floc mass) using a mass-conservative interpolation scheme based on inverse distance.

Fig. 8: Flocmod redistribution on discrete classes

FLOCMOD parameters are all defined in MUSTANG namelist within the flocmod namelist namflocmod. The
different parameters are listed and detailed below when describing flocculation processes.

To save computation time, probability kernels are mainly pre-processed before the computation loop, except the
fragmentation by collision kernel. Be careful, if l_COLLFRAG is activated, computation time can be very sig-
nificantly impacted.

FLOCMOD processes
Flocculation processes are actually competition between aggregation and breakup mechanisms, driven by turbu-
lence, SPM concentration, and potentially salinity and organic matter content. The last two control parameter are
not yet included in FLOCMOD explicitly. Aggregation is controlled by turbulent shear and differential settling,
while fragmentation is exclusively controlled by shear, with different (concurrently usable) options: shear fragmen-
tation, shear erosion, collision-induced fragmentation. All floc interactions are limited to “two-body” interactions.
The generic equation given below define all processes involved in FLOCMOD, both in term of gain (G) or loss
(L) per class. The main model variable is the number concentration of flocs Nk in a given class k. ASH, ADS and
fragmentation by collision can be activated using boolean l_ASH, l_ADS and l_COLLFRAG respectively from
the namelist.

Floc fractal approach
Flocs observed in nature are characterized by a wide range of size and densities, based on mineral intrinsic features,
the organic matter content in SPM, and based on hydrological and hydrodynamics factors. In general, small flocs
have high excess densities (O(100-1000 kg/m3)), and large flocs low densities (O(10-100kg/m3)). In FLOCMOD,
we use the fractal approach to represent floc characteristics [Kranenburg, 1994] : floc size D, floc mass M, floc

98 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 9: Flocmod processes

excess density ∆𝜌 (𝜌 − 𝜌𝑤). Flocs are formed from N primary particles with a unique size 𝐷𝑝 (f_dp0 in the
namelist) and density 𝜌𝑝 (ros from the SUBSTANCE namelist parasubstance_MUSTANG.txt). The floc structure
(~compacity) is controlled by the fractal dimension 𝑛𝑓 (f_nf) such as:

𝑁 = (𝐷𝐷𝑝
)𝑛𝑓

𝑀 = 𝜌𝑝 · 𝜋6 ·𝐷𝑝
3 ·𝑁

∆𝜌 = (𝜌𝑝 − 𝜌𝑤) · (𝐷𝐷𝑝
)3−𝑛𝑓

Shear rate G
The shear rate G is an hydrodynamic parameter. If GLS_MIXING cppkey is used in CROCO, G can be directly
calculated from 𝜖 such as :

𝐺 =
√︀

𝜖
𝜈

Otherwise, an 𝜖 vertical profile is calculated from Nezu and Nakagawa and the bottom friction velocity 𝑢* (from
MUSTANG) such as :

𝜖 = 𝑢*3

𝜅ℎ
ℎ−𝑧
𝑧

Where h is the water depth and z the distance from bottom.

Shear aggregation (𝐺𝐴𝑆𝐻 ; 𝐿𝐴𝑆𝐻)

These terms correspond to the gain or loss of class k particles when i) two particles in movement (by shear) collide
and ii) the collision is efficient, i.e. the newly formed bound between the two particles can withstand the shear
induced by the collision. The two-body collision probability function 𝐴𝑆𝐻(𝑖, 𝑗) is a function of the shear rate 𝐺
and particle diameters 𝐷𝑖 and 𝐷𝑗 [McAnally and Mehta, 2000, McAnally and Mehta, 2002].

𝐺𝐴𝑆𝐻(𝑘) = 1
2

∑︀
𝑀𝑖+𝑀𝑗=𝑀𝑘

𝛼𝑖𝑗𝐴𝑆𝐻(𝑖, 𝑗)𝑛𝑖𝑛𝑗

𝐿𝐴𝑆𝐻(𝑘) =
∑︀𝑛𝑐
𝑖=1 𝛼𝑖𝑘𝐴𝑆𝐻(𝑖, 𝑘)𝑛𝑖𝑛𝑘

𝐴𝑆𝐻(𝑖, 𝑗) = 𝐺
6 (𝐷𝑖 +𝐷𝑗)

3

𝛼𝑖𝑗 is the collision efficiency representing particle cohesiveness, i.e. the physico-chemical forces and the sticking
properties of organic matter. In the actual version of FLOCMOD, 𝛼𝑖𝑗 = 𝛼 is a constant parameter (between 0 and
1) set in the FLOCMOD namelist.

Differential settling aggregation (𝐺𝐴𝐷𝑆 ; 𝐿𝐴𝐷𝑆)

𝐴𝐷𝑆 represents collisions and aggregation that can occur when 2 flocs with different settling velocities can interact
during settling. Kernels are similar to 𝐺𝐴𝑆𝐻 and 𝐿𝐴𝑆𝐻 , except that the collision probability 𝐴𝑆𝐻 is substituted
with 𝐴𝐷𝑆 such as :

1.12. Other modules : sediment models, flow-obstruction models, biology models 99

Croco Documentation, Release 2.0.0

Fig. 10: Flocmod fractal approach

𝐴𝐷𝑆(𝑖, 𝑗) = 𝜋
4 (𝐷𝑖 +𝐷𝑗)

2 |𝑊𝑠,𝑖 −𝑊𝑠,𝑗 |

Where 𝑊𝑠,𝑖 is the floc settling velocity of class i, calculated from Stokes :

𝑊𝑠,𝑖 = 𝑔
18𝜇∆𝜌𝑖𝐷𝑖

2

Shear fragmentation (𝐺𝑆𝐵 ; 𝐿𝑆𝐵)

Shear fragmentation represents the action of shear (turbulent) forces on flocs, leading to breakup.

𝐺𝑆𝐵(𝑘) =
∑︀𝑛𝑐
𝑖=𝑘+1 𝐹𝐷𝑆𝐵𝑘𝑖𝐵𝑖𝑛𝑖

𝐿𝑆𝐵(𝑘) = 𝐵𝑘𝑛𝑘

𝐵𝑖 = 𝛽𝑖𝐺
𝛽2𝐷𝑖(

𝐷𝑖−𝐷𝑝

𝐷𝑝
)𝛽3

𝛽𝑖 is the fragmentation rate, indirectly related to yield strength and floc resistance to breakup. In the actual version
of FLOCMOD, 𝛽𝑖 is a constant set in the FLOCMOD namelist. Following Winterwerp et al. [2002], beta_2 = 3/2
and beta_3 = 3 - n_f.

FDSB is the size distribution function of fragmented flocs by shear. Two modes are available: binary or ternary
breakup.

• Binary distribution : fragmentation of a floc with mass 𝑚𝑖 in two identical flocs of mass 𝑚𝑖/2.

𝐹𝐷𝑆𝐵𝑖𝑗 =

{︂
2 if 𝑚𝑗 = 𝑚𝑖

2
0 otherwise

• Ternary distribution : fragmentation of a floc with mass 𝑚𝑖 in one floc of mass 𝑚𝑖/2 and 2 flocs of mass
𝑚𝑖/4.

𝐹𝐷𝑆𝐵𝑖𝑗 =

⎧⎨⎩ 1 if 𝑚𝑗 = 𝑚𝑖

2
2 if 𝑚𝑗 = 𝑚𝑖

4
0 otherwise

100 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

In FLOCMOD, binary fragmentation is activated if f_nb_frag = 2 and f_ater = 0, and ternary fragmentation if
f_nb_frag = 2 and f_ater = 0.5; Shear breakup can be only applied from a given floc size to limit fragmentation for
small flocs. This can be set in FLOCMOD by changing f_dmin_frag.

Erosion fragmentation
Shear fragmentation by floc erosion is an additional option to represent floc breakup. In this case, flocs are not
broken by 2 or 4 but a small fraction of the floc mass is eroded from the parent floc. This mode transfers a part of
the shear fragmentation probability to floc erosion using f_ero_frac. This means that (1-f_ero_frac) contributes to
binary/ternary fragmentation and f_ero_frac to fragmentation by erosion.

𝐺𝑆𝐸𝐵 and 𝐿𝑆𝐸𝐵 are calculated identically to 𝐺𝑆𝐵 and 𝐿𝑆𝐵 , except that the fragmentation distribution changes
according to the floc erosion parameter (FDSEB instead of FDSB) :

𝐹𝐷𝑆𝐸𝐵𝑖𝑗 =

⎧⎨⎩ 1 if 𝑚𝑗 = 𝑚𝑖 − 𝑓_𝑒𝑟𝑜_𝑛𝑏𝑓𝑟𝑎𝑔 ·𝑚𝑖

2 if 𝑚𝑗 = 𝑚𝑖

0 otherwise

Collision fragmentation
Collision can not only contribute to form bigger flocs, but instead if turbulence is strong, collision can overpass
floc strength and then contribute to break particles by mechanical failure. Hence, when activating this option, part
of the collision probability (𝐴𝑆𝐻(𝑖, 𝑗)) can induce fragmentation.

𝐺𝐶𝐵(𝑘) =
∑︀𝑛𝑐
𝑖=1

∑︀𝑛𝑐
𝑗=𝑖 𝐹𝐷𝐶𝐵𝑖𝑗 ·𝐴𝑆𝐻(𝑖, 𝑗) · 𝑛𝑖 · 𝑛𝑗

𝐿𝐶𝐵(𝑘) =
∑︀𝑛𝑐
𝑖=1 𝐹𝐷𝐶𝐵𝑖𝑘 ·𝐴𝑆𝐻(𝑖, 𝑘) · 𝑛𝑖 · 𝑛𝑘

𝐹𝐷𝐶𝐵𝑖𝑗 is the distribution of flocs after collision, and is function of the floc strength 𝜏𝑦,𝑖 and the collision-induced
shear stress between floc i and j : 𝜏𝑐𝑜𝑙𝑙𝑖𝑗,𝑖.

𝜏𝑐𝑜𝑙𝑙𝑖𝑗,𝑖 = 8
𝜋

(𝐺
𝐷𝑖+𝐷𝑗

2)2

𝐹𝑝·𝐷𝑖
2(𝐷𝑖+𝐷𝑗)

𝑀𝑖·𝑀𝑗

𝑀𝑖+𝑀𝑗

𝜏𝑦,𝑖 = 𝐹𝑦
Δ𝜌𝑖
𝜌𝑤

2
3−𝑛𝑓

Fp and Fy can be user-defined in the FLOCMOD namelist as f_fp and f_fy respectively.

For two-body interactions (i and j), two types of failures are likely to happen and control the expression of𝐹𝐷𝐵𝐶𝑖𝑗
[McAnally, 1999]:

• Collision fragmentation #1 : 𝜏𝑦,𝑖 > 𝜏𝑐𝑜𝑙𝑙𝑖𝑗,𝑖 and 𝜏𝑐𝑜𝑙𝑙𝑖𝑗,𝑖 > 𝜏𝑦,𝑗 : the collision-induced shear stress exceeds
the shear strength of the weakest aggregate only, consequently during the collision, the j floc breaks into
two fragments (𝐹𝑗,1 and 𝐹𝑗,2) such as 𝑀𝐹𝑗,1 = (1 − 𝑐𝑓𝑐𝑠𝑡) ·𝑀𝑗 and 𝑀𝐹𝑗,2 = 𝑐𝑓𝑐𝑠𝑡 ·𝑀𝑗. 𝐹𝑗,1 is a
free fragment while 𝐹𝑗,2 is bound with the i floc. cfcst is the inter-penetration depth, fixed as 3/16 based on
McAnally [1999]. This parameter is found in the namelist as f_cfcst.

• Collision fragmentation #2 : 𝜏𝑦,𝑖 < 𝜏𝑐𝑜𝑙𝑙𝑖𝑗,𝑖 and 𝜏𝑐𝑜𝑙𝑙𝑖𝑗,𝑖 > 𝜏𝑦,𝑗 : the shear stress is larger than shear
strength of both i and j flocs. Both flocs break into two fragments (𝐹𝑖,1; 𝐹𝑖,2) and (𝐹𝑗,1; 𝐹𝑗,2) such as
[𝑚𝐹 𝑖, 1;𝑚𝐹 𝑗, 1] = (1−𝑐𝑓𝑐𝑠𝑡)[𝑀𝑗 ;𝑀𝑗] and [𝑀𝐹 𝑖, 2;𝑚𝐹 𝑗, 2] = 𝑐𝑓𝑐𝑠𝑡[𝑀𝑗 ;𝑀𝑗]. Two particles are formed
from the two parent flocs 𝐹𝑖,1 and 𝐹𝑗,1. A third flocs is formed from the two fragments (𝐹𝑖,2 and 𝐹𝑗,2) that
bound during collision.

The fraction of collision contributing to floc breakup is controlled through the parameter f_collfragparam.

FLOCMOD execution
FLOCMOD can be non-conservative for high shear rates and/or high SPM concentration. To prevent for instabili-
ties, FLOCMOD includes a sub-time step algorithm. After mass exchange due to flocculation, FLOCMOD checks
if the new floc size distribution is fully positive or null. If true, execution continues. Otherwise, the time step
is divided by two and a new floc size distribution is recalculated. This time-step adaptation is applied as long as
floc size distribution contains negative mass. Flocculation is then repeated until reaching a cumulated time step
corresponding to the CROCO time step.

It is possible to be slightly permissive and allow a small negative mass concentration (f_mneg_param). In this case,
the class characterized by negative mass is set to 0 and the “corresponding added mass” is proportionally removed

1.12. Other modules : sediment models, flow-obstruction models, biology models 101

Croco Documentation, Release 2.0.0

from the positive classes to be mass conservative. This can help to limit time step adaptation, and hence reduce
computation costs.

It is also possible to disconnect FLOCMOD when SPM concentration is very low. In FLOCMOD, this concentra-
tion threshold (in g/l) is defined in f_clim and set by default to 0.001 g/l.

1.12.2.2.3.8 Erosion process

Note: Patience, work in progress, meanwhile see : https://mars3d.ifremer.fr/docs/doc_MUSTANG/doc.
MUSTANG.erosion.html

Erosion fluxes
Lateral erosion
key_MUSTANG_lateralerosion

Note: Patience, work in progress

Erosion, layer managment

1.12.2.2.3.9 Deposit process

Note: Patience, work in progress, meanwhile see : https://mars3d.ifremer.fr/docs/doc_MUSTANG/doc.
MUSTANG.deposit.html

Deposit processes are treated implicitly in water transport equations. First, deposition flux trends are evaluated for
each variable before advection computations.

Then after advection resolution, effective deposit is computed with new concentrations in water (estimated after
transport and settling) and sediment layers are updated (see Deposition layer managment)

Deposit fluxes
TODO : add formulation used for deposit fluxes
Sliding fluxes

102 Chapter 1. Model Documentation

https://mars3d.ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.erosion.html
https://mars3d.ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.erosion.html
https://mars3d.ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.deposit.html
https://mars3d.ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.deposit.html

Croco Documentation, Release 2.0.0

A sliding process of the fluid mud is implemented. Only MUD sediments are concerned by this feature. The
modelling strategy consists in :

• compute the part of mud which slides if the slope is steep

• deposit this part towards lower neighboring cells according to the slope

To activate this behavior, the cppkey #key_MUSTANG_slipdeposit must be define and the slopefac value in
MUSTANG namelist &namsedim_deposition must be greater than 0.

The part of mud which slides on each cell limit is the product of the slope by the deposit fluxe for each mud class
in the cell and by the factor slopefac.

No sediment slides if the slope is not positive.

The sum of sliding sediment over the four cell’s limits could not be greater than the deposit flux computed in the
cell.

Deposit layer managment

Note: Patience, work in progress

1.12.2.2.3.10 Consolidation

Cpp keys involved : #key_MUSTANG_add_consol_outputs

Warning: NOT TESTED YET IN CROCO Documentation to come after. Meanwhile : https://mars3d.
ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.consol.html

1.12. Other modules : sediment models, flow-obstruction models, biology models 103

https://mars3d.ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.consol.html
https://mars3d.ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.consol.html

Croco Documentation, Release 2.0.0

1.12.2.2.3.11 Diffusion within sediment and at interface

Cpp keys involved : #key_noTSdiss_insed #key_nofluxwat_IWS

Warning: NOT TESTED YET IN CROCO Documentation to come after. Meanwhile : https://mars3d.
ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.diffu.html

1.12.2.2.3.12 Bioturbation

Warning: NOT TESTED YET IN CROCO Documentation to come after. Meanwhile : https://mars3d.
ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.bioturb.html

1.12.2.2.3.13 Suspended sediment concentration effect on density

Witt cpp key SED_DENS, effects of suspended sediment on the density field are included with terms for the weight
of each sediment class in the equation of state for seawater density as:

𝜌 = 𝜌𝑤 +

𝑛𝑣𝑝𝑐∑︁
𝑖=1

𝐶𝑖
𝜌𝑠,𝑖

(𝜌𝑠,𝑖 − 𝜌𝑤)

This enables the model to simulate processes where sediment density influences hydrodynamics, such as density
stratification and gravitationally driven flows.

Note: If key_sand2D is used, sand variable treated as 2D variable are excluded of the sum and do not modify
density

1.12.2.2.3.14 Morphodynamic

To activate morphodynamic means that the bathymetry used in the hydrodynamic model will evoluate with time.
The following figure shows the difference between a non-morphodynamic (ie morphostatic) simulation and a mor-
phodynamic simulation.

The user needs to activate cpp key #MORPHODYN and to set to true the boolean l_morphocoupl (see
&namsedim_morpho) to run in morphodynamic mode.

The user can also accelerate morphologic evolution by using MF parameter (see &namsedim_morpho). In this
case, two option are available to accelerate the changes :

• MF could amplified directly sediment height variation (l_MF_dhsed = T) on water height. In this case,
sediment height and the bed layers compositions are not modified. Bedrock location is modified.

• MF could amplified erosion/deposition fluxes (l_MF_dhsed = F). In this case, depending on sediment
classes in the simulation, the bed layer composition could be different from the case without MF or with
(l_MF_dhsed = T) as coarse sediment settled before small one. Sediment height and bed layers composi-
tions are modified but bedrock location is maintained.

104 Chapter 1. Model Documentation

https://mars3d.ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.diffu.html
https://mars3d.ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.diffu.html
https://mars3d.ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.bioturb.html
https://mars3d.ifremer.fr/docs/doc_MUSTANG/doc.MUSTANG.bioturb.html

Croco Documentation, Release 2.0.0

1.12. Other modules : sediment models, flow-obstruction models, biology models 105

Croco Documentation, Release 2.0.0

1.12.2.2.4 Available online diagnosis

1.12.2.2.4.1 SUBMASSBALANCE

This functionnality allows you to compute for each substance :

• fluxes through boundaries

• budgets (stocks and fluxes) in sub-domains

By default, one domain is considered, containing all the computational grid. User can also define one or several
subdomain and boundaries in a specific file (see submassbalance input file).

To use this functionnality : set submassbalance_l=.true. in SUBSTANCE namelist and activate cppkey SUB-
STANCE_SUBMASSBALANCE.

Two type of borders can be defined : closedsub-domains or open boundaries.

For closed sub-domain, this functionnality computes :

• net cumulated fluxes through water (since the start date of massbalance computation) in and out of a given
sub-domain,

• net cumulated input fluxes into the sub-domain due to rivers discharges,

• total budget of substance in the sub-domain (total budget must be constant if conservative substance),

• stocks in the water column and in the sediment within the sub-domain (if MUSTANG is activated),

• net cumulated input fluxes into the sub-domain due to bedload transport (if MUSTANG and bedload is
activated).

A budget sub-domain is only valid if the boundary is closed

For open boundaries, this functionnality computes :

• net cumulated fluxes through boundaries (since the start date of massbalance computation), sign depending
on the definition of each segment of the boundary.

Boundaries and sub-domains are defined for all water column (from the surface water to the bottom).

Submassbalance results are writen in a separate netcdf file (path defined in nmlsubmassbalance : parameter sub-
massbalance_output_file)

Each border can be retrieve by its name in border_name variable and each substance can be retrieve by its name in
tracer_name variable. Units correspond to the unit of the substance, for example kg for sediment substance.

“border_*” variables correspond to opened borders results and mask.

“budget_*” variables correspond to closed domains results and mask.

Mask variables allow the user to check the border definition :

• border_mask_N and budget_mask_N : equals 1 if the mesh is a South boundary ; -1 if the mesh is a North
boundary and 0 otherwise

• border_mask_E and budget_mask_E : equals 1 if the mesh is a West boundary ; -1 if the mesh is an East
boundary and 0 otherwise

• budget_mask : equals 1 in the sub-domain and 0 out of the sub-domain

Header of an example submassbalance output file:

dimensions:
xi_rho = 821 ;
eta_rho = 623 ;
lchain = 200 ;
time = UNLIMITED ; // (8748 currently)
border = 89 ;

(continues on next page)

106 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

(continued from previous page)

budget = 3 ;
tracer = 3 ;

variables:
double xi_rho(xi_rho) ;

xi_rho:units = "index x axis" ;
double eta_rho(eta_rho) ;

eta_rho:units = "index y axis" ;
double time(time) ;

time:units = "seconds since 1900-01-01" ;
double lon_rho(eta_rho, xi_rho) ;

lon_rho:long_name = "longitude of RHO-points" ;
lon_rho:units = "degree_east" ;

double lat_rho(eta_rho, xi_rho) ;
lat_rho:long_name = "latitude of RHO-points" ;
lat_rho:units = "degree_north" ;

double border(border) ;
char border_name(border, lchain) ;
int border_mask_N(eta_rho, xi_rho, border) ;
int border_mask_E(eta_rho, xi_rho, border) ;
double budget(budget) ;
char budget_name(budget, lchain) ;
int budget_mask_N(eta_rho, xi_rho, budget) ;
int budget_mask_E(eta_rho, xi_rho, budget) ;
int budget_mask(eta_rho, xi_rho, budget) ;
double tracer(tracer) ;
char tracer_name(tracer, lchain) ;
double border_flux(time, tracer, border) ;

border_flux:description = "FLux through line" ;
double budget_total(time, tracer, budget) ;

budget_total:description = "Global budget (should be constant if conservative␣
→˓var)" ;

double budget_stwat(time, tracer, budget) ;
budget_stwat:description = "Stock in water" ;

double budget_stsed(time, tracer, budget) ;
budget_stsed:description = "Stock in sediment" ;

double budget_flux_ws(time, tracer, budget) ;
budget_flux_ws:description = "FLux at interface water-sediment (> if from sed␣

→˓to wat)" ;
double budget_flux_obc(time, tracer, budget) ;

budget_flux_obc:description = "FLux from zone boundaries (>if in)" ;
double budget_flux_source(time, tracer, budget) ;

budget_flux_source:description = "FLux from rivers" ;

1.12.2.2.5 FAQ and known issues

1.12.2.2.5.1 Coarse sediment in MUSTANG

In MUSTANG V1 (#key_MUSTANG_V2 is not defined), GRAVEL can not go in suspension, they will not move.
Another way to deal with GRAVEL in V1 is to declare them as SAND. They will not travel far anyway in suspension,
but at least they will impact the sediment dynamics. If their diameter is greater than 2 mm, they will not impact
the mean critical bed shear stress (i.e. common critical bed shear stress for all sediment classes in V1).

Nevertheless, MUSTANG V2 is recommended to deal with coarse sediment.

1.12. Other modules : sediment models, flow-obstruction models, biology models 107

Croco Documentation, Release 2.0.0

1.12.2.2.5.2 Not yet implemented features

The feature related to the subroutine bathy_actu_fromfile work for MARS3D but have not been translate for
CROCO yet.

Consolidation, bioturbation, flocculation , diffusion within sediment and at interface are code but have not been
tested yet.

1.12.3 OBSTRUCTIONS module : flow in presence of various obstructions

1.12.3.1 Introduction

In coastal environments, hydrodynamics is often modified by obstructions (natural or anthropogenic) such as sea-
grass meadows, oyster and mussels farming, salt-marsh and estuarine vegetation.

The OBSTRUCTIONS module have been implemented to take account for these modifications of hydrodynam-
ics induced by differents kinds of obstructions. This is a generic module adapted to various types of natural and
anthropogenic obstructions that can be found in coastal ecosystems (i.e. rigid/flexible, submerged/emergent, up-
ward/downward/3D).

The module as been designed to need a minimal, optimized, number of empirical calibration parameters. Multiple
obstruction types can be defined in the same grid cell.

The influence of obstruction elements on three-dimensional flow is taken into account through:

• the loss of momentum due to the drag exerted on obstruction elements

• the balance between turbulence production and dissipation introduced within the k-𝜖 turbulence closure
scheme

The OBSTRUCTIONS module is coupled with the hydrodynamic CROCO model.

This module was primarily designed to describe the three-dimensional hydrodynamic effects of flexible seagrass
Zostera noltei on flow Kombiadou et al. [2014]. In its updated present state (Ganthy et al. [2024]), the module
allows the simulation of various types of obstructions. The numerical scheme has also been modified to allow
multiple obstructions in the same grid cell. The computation procedure for flexible obstructions height has been
improved.

Currently three generic obstructions types can be taken into account :

• Upward obstructions (UP): obstructions starting from the seabed and erected toward the water surface (e.g.
vegetation, mussel post. . .). These obstructions can be rigid or flexible.

• Downward obstructions (DO): obstruction starting from the water surface and hanging toward the bottom
(e.g. mussel/oyster lines). As for the UP type, these obstructions can be rigid or flexible.

• Three dimensional obstruction (3D): specific case of upward type, describes obstructions which are in
mid-water (no structures near the bed nor the surface). This specific type has been typically dedicated to
represent oyster bags.

Each obstruction element can be described in two ways depending on its geometry:

• cylinder-like (e.g reeds or mussel rops)

• parallelepiped-like (e.g. seagrass leaves)

For upward or downward obstruction, obstruction can be flexible. This means the obstruction elements will interact
with ambient current flow while bending, leading to changes in obstruction height, element density and horizontal
cross-sectional area depending on their bending angle.

The main formulations (cylinder case) of the module are :

108 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 11: Description of 3 types of obstructions

Fig. 12: Description of the effect of flexibility on obstructions

1.12. Other modules : sediment models, flow-obstruction models, biology models 109

Croco Documentation, Release 2.0.0

• for the drag part :

𝐹𝑢(𝑧) = −1

2
· 𝐶𝑑 · 𝜌 · 𝑑0(𝑧) · 𝑛(𝑧) · 𝑢(𝑧) ·

√︀
𝑢(𝑧)2 + 𝑣(𝑧)2 · 𝑓𝑧(𝑧) · 𝑓𝑥𝑦(𝑧)

𝐹𝑣(𝑧) = −1

2
· 𝐶𝑑 · 𝜌 · 𝑑0(𝑧) · 𝑛(𝑧) · 𝑣(𝑧) ·

√︀
𝑢(𝑧)2 + 𝑣(𝑧)2 · 𝑓𝑧(𝑧) · 𝑓𝑥𝑦(𝑧)

• for the turbulence part :

(
𝜕𝑘

𝜕𝑡
)𝑜𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 =

1

1−𝐴(𝑧)
· 𝜕
𝜕𝑧

{︂
(1−𝐴(𝑧)) · 𝜈 + 𝜈𝑡

𝜎𝑘
· 𝜕𝑘
𝜕𝑧

}︂
+ 𝑇 (𝑧)

(
𝜕𝜖

𝜕𝑡
)𝑜𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 =

1

1−𝐴(𝑧)
· 𝜕
𝜕𝑧

{︂
(1−𝐴(𝑧)) · 𝜈 + 𝜈𝑡

𝜎𝜖
· 𝜕𝜖
𝜕𝑧

}︂
+ 𝑇 (𝑧) · 𝜏−1

𝜖

With :

• 𝐶𝑑 : the drag coefficient

• 𝑑0 : the obsruction diameter

• 𝑛 : the obsruction density

• 𝑓𝑧 : the fraction of layer effectively occupied by obstructions

• 𝑓𝑥𝑦 : the fraction of grid cell effectively occupied by obstructions

• 𝐴 : the horizontal cross-sectional obstruction area per unit area

• 𝑇 : a function of 𝐹𝑢, 𝐹𝑣, 𝑢, 𝑣, 𝜌

• 𝜏𝜖 : a function of 𝐴,𝑛, 𝑘, 𝜖, 𝑇

This module have been developped by Florian Ganthy coupled with MARS model since 2011 (Ganthy et al.
[2024]). It has been implemented in CROCO in 2023-2024 with an 1DV module (all computing are done within
one (i,j) grid cell).

At each time step, the module execute the steps:

• Reading forcing height,density, width and thickness of obstruction (if time varying)

• Preparing hydrodynamic variables from CROCO :

– current component u,v at the center of the cell

– thicknesses of layers at the center of the cell

– height of the center of each layer at the center of the cell

• Computes obstructions height and bending angle (if flexible)

• Computes vertical distribution of obstructions densities

• Computes the fraction of sigma layer occupied by obstructions

• Computes obstructions width and thickness according to bending angle (if flexible)

• Computes obstructions correction term for coverage (fragmentation) within one single grid cell

• Computes obstructions projected horizontal and vertical area

• Computes obstructions bottom roughness (for obstruction represented as macro-roughness instead of turbu-
lent approach)

• Computes obstructions parameters used after by CROCO (drag and turbulence)

– the sink terms for 3D friction force component at the center of the cell : 𝐹𝑢, 𝐹𝑢
– the source terms : 𝑇, 𝜏𝜖 for 3D turbulent dissipation at the center of the cell

– the 3D obstruction vertical area for all obstructions 𝐴

110 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Note: OBSTRUCTIONS module can only be used if #SOLVE3D and #GLS_KEPSILON are activated as the
turbulence closure scheme in the equations is k-𝜖

1.12.3.2 Inputs files

To use the OBSTRUCTIONS module in CROCO you will need to :

• activate module OBSTRUCTIONS within CROCO environment by defining the #OBSTRUCTION cppkey.

• define path to the module main parameter file in CROCO input file croco.in as follow. In this example, the
file is located in TEST_CASES directory but it could be placed in any directory.

obstruction: input file
TEST_CASES/obstruction_seagrass_para.txt

Then you can compile and run CROCO as any other CROCO run.

1.12.3.2.1 Obstruction main parameter file

This file is the main file of obstruction module. It’s where the number of obstruction and the path to specific
parameters files are defined. It’s also where the output of obstruction variables is defined.

The file is structured in 3 namelists :

• obst_main : number of obstruction and parameter for unconfined conditions

• obst_input : paths to each obstruction variable file and to position file

• obst_output : booleans to choose which variable will be outputed

Each namelist is described bellow with the description of each parameter.

&obst_main namelist:

• obst_nbvar : number of obstructions

• obst_c_paramhuv : coefficient for unconfined conditions. For flexible obstructions, when model from
Abdelrhman [2007] is not used but exponential formula is used (see parameter r_l_obst_param_height), ob-
struction’s height is compute using partial depth averaged velocity corresponding to unconfined canopy.
This partial depth is computed from bottom (or surface depending on obstruction type) with formula:
obst_c_paramhuv * height of obstruction at precedent time step. As default value, one could take
obst_c_paramhuv=10.

&obst_input namelist:

• obst_fn_position : file name for input obstruction variables positions, see position file

• obst_fn_var : list of paths to the parameter file of each obstruction variable. For example with obst_nbvar
= 2 : ‘file1.txt’,’file2.txt’. See variable specific file

&obst_output namelist:

• l_obstout_pos : write obstructions position within output file, one 2D variable per obstruction

• l_obstout_height_f : write obstructions forcing height within output file, one 2D variable per obstruction

• l_obstout_height_e : write obstructions effective height within output file, one 2D variable per obstruction

• l_obstout_dens_f : write obstructions forcing density within output file, one 2D variable per obstruction

• l_obstout_dens_e : write obstructions effective density within output file, one 3D variable per obstruction

• l_obstout_width_f : write obstructions forcing width, one 2D variable per obstruction

• l_obstout_width_e : write obstructions effective width, one 3D variable per obstruction

1.12. Other modules : sediment models, flow-obstruction models, biology models 111

Croco Documentation, Release 2.0.0

• l_obstout_thick_f : write obstructions forcing thick, one 2D variable per obstruction

• l_obstout_thick_e : write obstructions effective thick, one 3D variable per obstruction

• l_obstout_theta : write obstructions bending angle, one 3D variable per obstruction

• l_obstout_frac_xy : write obstructions fragmentation correction factor, one 2D variable per obstruction

• l_obstout_frac_z : write obstructions fraction of sigma layer occupied, one 3D variable per obstruction

• l_obstout_fuzvz : write obstructions resistance force 3D, two 3D variable (vector)

• l_obstout_a2d : write 2D obstructions horizontal area, one 2D variable per obstruction and 3 additionnal
2D variables to distinguish “No_turb” variables, “Turb” variable and “All” variables

• l_obstout_a3d : write 3D obstructions horizontal area, one 3D variable per obstruction and 3 additionnal
3D variables to distinguish “No_turb” variables, “Turb” variable and “All” variables

• l_obstout_s2d : write 2D obstructions vertical area, one 2D variable per obstruction and 3 additionnal 2D
variables to distinguish “No_turb” variables, “Turb” variable and “All” variables

• l_obstout_s3d : write 3D obstructions vertical area, one 3D variable per obstruction and 3 additionnal 3D
variables to distinguish “No_turb” variables, “Turb” variable and “All” variables

• l_obstout_drag : write obstructions drag coefficient, one 3D variable per obstruction

• l_obstout_tau : write obstructions turbulent stress, 3D variable

If you have several type of obstructions, the number of variables could become huge. Be careful to output only the
needed variables.

“Turb”(“No_turb”) variables correspond to the contribution of obstructions with r_l_obst_noturb == False (True),
see variable specific file.

Note: Variables dens_e, width_e, thick_e, theta, frac_xy, frac_z, a2d, s2d, s3d and drag are not allocated if not
wanted in output. If you do not need them, put False in the corresponding boolean to reduce space disk and memory
needs of your simulation

1.12.3.2.2 Obstruction variable specific characteristics file

This file contains the characteristics of one type of obstruction structured in 7 namelists :

• obst_var_main : main variable parameters

• obst_var_option : variable behaviour’s options

• obst_var_init : parameters relative to initialization

• obst_var_flexibility : parameters relative to the flexible obctructions

• obst_var_roughdrag : parameters relative to the roughness length and drag computing

• obst_var_fracxy : parameters relative to small-scale patchiness correction

• obst_var_bstress : parameters relative to the bottom shear stress

Each namelist is described bellow with the description of each parameter.

&obst_var_main namelist:

• r_obst_varname : Name (identifier) of the variable, for example “Seagrass”

• r_obst_type : choice between “UP”, “DO”, “3D” :

– “UP” : if variable start from the bed

– “DO” : if variable hang from sea-surface (down)

112 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

– “3D” : if variable is full 3D (based on vertical density variation, see r_l_obst_filedistri and variable
vertical distribution file)

• r_l_obst_cylinder : boolean, True if variable representation is a cylinder (if False : parallelepiped)

&obst_var_option namelist:

• r_l_obst_flexible : boolean, True if variable is flexible (if False : rigid)

• r_l_obst_noturb : boolean, True, if variable should be represented as macro-roughness (instead of turbulent
approach) (only for obstruction of type “UP”)

• r_l_obst_filetimeserie : boolean, True to use a time-series (not spatial) of obstructions characteristics. NOT
AVAILABLE with r_l_obst_init_spatial = .TRUE.

• r_obst_fn_timeserie : Netcdf file containing temporal obstructions characteristics (if r_l_obst_filetimeserie
= .TRUE.), For information about format, see variable temporal file

• r_l_obst_filedistri : To use a file describing the vertical distribution of obstruction density

• r_obst_fn_distrib : File containing the vertical distribution of obstruction density (if r_l_obst_filedistri =
.TRUE.), see variable vertical distribution file

&obst_var_init namelist:

• r_l_obst_init_spatial : boolean, True to use spatially variable file (not temporal) of obstructions character-
istics. NOT AVAILABLE with r_l_obst_filetimeserie = .TRUE.

• r_obst_fn_initspatial : Netcdf file containing spatial obstructions characteristics (if r_l_obst_init_spatial =
.TRUE.) (variables : height,width,thick and dens) For information about format see : initialization spatial
file

• r_obst_i_height : Initial height (unbent, eg. leaf-length for segrasses) of obstructions, used if not spatial
initialisation (r_l_obst_init_spatial = .FALSE.)

• r_obst_i_width : Initial width (or diameter for cylindric obstructions) of obstructions (perpendicular to
flow), used if not spatial initialisation (r_l_obst_init_spatial = .FALSE.)

• r_obst_i_thick : Initial thick (or diameter for cylindric obstructions) of obstructions (along the flow), used
if not spatial initialisation (r_l_obst_init_spatial = .FALSE.).

• r_obst_i_dens : Initial density of obstructions (maximum density if using a vertical distribution file), used
if not spatial initialisation (r_l_obst_init_spatial = .FALSE.)

Note: Width (r_obst_i_width) should equal thickness (r_obst_i_thick) for cylindric obstructions

If the obstruction is flexible, the obstruction posture is computed at each time step depending on current (u,v) with
an update of obstruction bending depending on the folowing 3 options :

• Abdelrhman [2007] procedure,

• exponential decrease, using r_obst_c_height_x0 and r_obst_c_height_x1,

• proportional (no influence of current), using only r_obst_c_height_x0

To choose an option and the corresponding parameters, fill the &obst_var_flexibility namelist:

• r_l_obst_abdelposture : boolean, True to use Abdelrhman [2007] procedure to compute bending

• r_obst_c_abdel_nmax : Number of segments for Abdelrhman [2007] procedure

• r_obst_c_rho : Volumic mass of obstructions for Abdelrhman [2007] procedure

• r_obst_c_lift : Lift coefficient for Abdelrhman [2007] procedure

• r_obst_c_shelter : Sheltering coefficient A for Abdelrhman [2007] procedure

• r_l_obst_param_height : boolean, True to use exponential decrease formulation to compute bending
(height = r_obst_c_height_x0 * height * EXP(r_obst_c_height_x1*uv), with uv the partial depth averaged
velocity corresponding to unconfined canopy)

1.12. Other modules : sediment models, flow-obstruction models, biology models 113

Croco Documentation, Release 2.0.0

• r_obst_c_height_x0 : First parameter for empirical formulation

• r_obst_c_height_x1 : Second parameter for empirical formulation

&obst_var_roughdrag namelist:

• r_l_obst_drag_cste : To use a constant drag coefficient (r_obst_c_drag) for 𝐶𝑑 (see equations) (if false,
drag varies depending on the bending angle)

• r_obst_c_drag : Drag coefficient 𝐶𝑑 (maximum value if not constant) for obstructions elements

• r_obst_c_lz : Coefficient for turbulent dissipation time-scale between obstructions elements (used to com-
pute 𝜏𝜖 in equations)

• r_l_obst_abdelrough_cste : To use a constant coefficient during Abdelrhman [2003] procedure used to
compute obstruction macro-roughness

• r_obst_c_crough_x0 : First coefficient for drag coefficient during Abdelrhman [2003] procedure

• r_obst_c_crough_x1 : Second coefficient for drag coefficient during Abdelrhman [2003] procedure

If obstructions do not fill completly the cell surface, a patchiness correction can be applied using the fraction of cell
occupied by obstructions (given in position file) and several parametrization given in &obst_var_fracxy namelist:

• r_l_obst_fracxy : boolean, True to take account for patchiness correction (if false, no correction is applied)

• r_obst_fracxy_type : if r_l_obst_fracxy is True, choose the kind of correction method :

– 0 : patchiness correction is equal to the fraction of cell occupied by obstructions (given in position file)

– 1 : patchiness correction is equal to an exponential of the fraction of cell occupied by obstructions with
one coefficient (r_obst_c_fracxy_k0)

– 2 : patchiness correction is equal to an exponential of the fraction of cell occupied by obstructions with
several coefficients (r_obst_c_fracxy_k0, r_obst_c_fracxy_k1 and r_obst_c_fracxy_l)

– 3 : patchiness correction is equal to the product of the fraction of cell occupied by obstructions and
r_obst_c_fracxy_k0

• r_obst_c_fracxy_k0 : Coefficient for the corrections type 1, 2 and 3

• r_obst_c_fracxy_k1 : First parameter for correction of the exponential coefficient (type 2)

• r_obst_c_fracxy_l : Second parameter for correction of the exponential coefficient (type 2)

If a sediment model is used (here available with MUSTANG), the OBSTRUCTIONS module can be used to
modify the roughness length used to compute the bottom shear stress. The corresponding parameters are in
&obst_var_bstress namelist:

• r_l_obst_z0bstress : To activate the impact of obstruction on roughness length used to compute the bottom
shear stress (only for UP type)

• r_obst_z0bstress_option : Option to compute the obstruction induced roughness length:

– 0 : constant z0 (r_obst_c_z0bstress)

– 1 : parameterization

• r_obst_c_z0bstress : Constant (uncorrected value of roughness length)

• r_obst_c_z0bstress_x0 : First parameter for rouhgness length computation (in 3D)

• r_obst_c_z0bstress_x1 : Second parameter for rouhgness length computation (in 3D)

114 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.12.3.2.3 Obstruction variable specific vertical distribution file

To specified 3D obstruction or a variation of obstruction density on its height, a text file can be used to specified
the fraction (in %, between 0 and 100) of density to apply at a fraction of height (in %, between 0 and 100) .

Example for a density equal to 100% of the specified density through 0 to 50% of specified height and 50% above
:

name
nb_hnorm
4
Hnorm nnorm
0. 100
50. 100
50.0001 50
100.100 50
END OF FILE

The number of vertical discretization is given on line number 3. The readed lines begin at line number 5.

Example to specified a 3D obsctruction :

Table
nb_hnorm
4
Hnorm nnorm
0.0000 0
87.5 0
87.5001 100.
100.100 100.
END OF FILE

1.12.3.2.4 Obstruction position file

This file is a netcdf file containing the fraction of cell occupied by obstructions (value from 0 to 1) on the model
grid.

The dimension are the same as the grid file (eta_rho, xi_rho). The name of the variable must be pos_<obstruction
name> (with obstruction name given in obst_var_main)

Example with an obstruction named Obstruct :

netcdf obstruction_seagrass_position {
dimensions:

eta_rho = 7 ;
time = UNLIMITED ; // (1 currently)
xi_rho = 38 ;

variables:
float pos_Obstruct(time, eta_rho, xi_rho) ;

pos_Obstruct:_FillValue = NaN ;
double time(time) ;

time:long_name = "time since initialization" ;
time:units = "seconds since 2019/01/01 00:00:00" ;
time:field = "time, scalar, series" ;
time:standard_name = "time" ;
time:axis = "T" ;

}

Only the first time index is read.

1.12. Other modules : sediment models, flow-obstruction models, biology models 115

Croco Documentation, Release 2.0.0

1.12.3.2.5 Obstruction initialization spatial file

This file is a netcdf file containing the variables : height, density, width and thickness on the model grid.

The dimension are the same as the grid file (eta_rho, xi_rho). The name of the variable must be :

• height_f_<obstruction name>

• dens_f_<obstruction name>

• width_f_<obstruction name>

• thick_f_<obstruction name>

(with obstruction name given in obst_var_main)

Example with an obstruction named Obstruct :

ncdump -h ../ktest/SEAGRASS_initspatial/spatial.nc
netcdf spatial {
dimensions:

xi_rho = 38 ;
eta_rho = 7 ;
time = UNLIMITED ; // (1 currently)

variables:
double time(time) ;

time:long_name = "time since initialization" ;
time:units = "seconds since 2019/01/01 00:00:00" ;
time:field = "time, scalar, series" ;
time:standard_name = "time" ;
time:axis = "T" ;

float height_f_Obstruct(time, eta_rho, xi_rho) ;
height_f_Obstruct:long_name = "Obstruction forcing height for Obstruct" ;
height_f_Obstruct:units = "m" ;
height_f_Obstruct:field = "" ;
height_f_Obstruct:coordinates = "time lat_rho lon_rho" ;

float dens_f_Obstruct(time, eta_rho, xi_rho) ;
dens_f_Obstruct:long_name = "Obstruction forcing density for Obstruct" ;
dens_f_Obstruct:units = "m-2" ;
dens_f_Obstruct:field = "" ;
dens_f_Obstruct:coordinates = "time lat_rho lon_rho" ;

float width_f_Obstruct(time, eta_rho, xi_rho) ;
width_f_Obstruct:long_name = "Obstruction forcing width for Obstruct" ;
width_f_Obstruct:units = "m" ;
width_f_Obstruct:field = "" ;
width_f_Obstruct:coordinates = "time lat_rho lon_rho" ;

float thick_f_Obstruct(time, eta_rho, xi_rho) ;
thick_f_Obstruct:long_name = "Obstruction forcing thickness for Obstruct" ;
thick_f_Obstruct:units = "m" ;
thick_f_Obstruct:field = "" ;
thick_f_Obstruct:coordinates = "time lat_rho lon_rho" ;

}

Only the first time index is read.

116 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.12.3.2.6 Obstruction temporal file

This file is a netcdf file containing the variables : height, density, width and thickness.

The name of the variable must be :

• height_f_<obstruction name>

• dens_f_<obstruction name>

• width_f_<obstruction name>

• thick_f_<obstruction name>

(with obstruction name given in obst_var_main)

The only axis heare is time. The height, density, width and thickness values are applied where the fraction of cell
occupied by obstructions is greater than 0 (given in position file).

Example with an obstruction named Obstruct :

netcdf timeserie2 {
dimensions:

time = UNLIMITED ; // (741 currently)
variables:

float dens_f_Obstruct(time) ;
dens_f_Obstruct:long_name = "Obstruction forcing density for Obstruct" ;
dens_f_Obstruct:units = "m-2" ;
dens_f_Obstruct:field = "" ;
dens_f_Obstruct:coordinates = "time lat_rho lon_rho" ;
dens_f_Obstruct:cell_methods = "eta_rho, xi_rho: mean" ;

float height_f_Obstruct(time) ;
height_f_Obstruct:long_name = "Obstruction forcing height for Obstruct" ;
height_f_Obstruct:units = "m" ;
height_f_Obstruct:field = "" ;
height_f_Obstruct:coordinates = "time lat_rho lon_rho" ;
height_f_Obstruct:cell_methods = "eta_rho, xi_rho: mean" ;

float thick_f_Obstruct(time) ;
thick_f_Obstruct:long_name = "Obstruction forcing thickness for Obstruct" ;
thick_f_Obstruct:units = "m" ;
thick_f_Obstruct:field = "" ;
thick_f_Obstruct:coordinates = "time lat_rho lon_rho" ;
thick_f_Obstruct:cell_methods = "eta_rho, xi_rho: mean" ;

double time(time) ;
time:long_name = "time since initialization" ;
time:units = "seconds since 2019/01/01 00:00:00" ;
time:field = "time, scalar, series" ;
time:standard_name = "time" ;
time:axis = "T" ;

float width_f_Obstruct(time) ;
width_f_Obstruct:long_name = "Obstruction forcing width for Obstruct" ;
width_f_Obstruct:units = "m" ;
width_f_Obstruct:field = "" ;
width_f_Obstruct:coordinates = "time lat_rho lon_rho" ;
width_f_Obstruct:cell_methods = "eta_rho, xi_rho: mean" ;

}

1.12. Other modules : sediment models, flow-obstruction models, biology models 117

Croco Documentation, Release 2.0.0

1.12.3.3 Outputs

1.12.3.3.1 Using CROCO output file

To select whether a variable is written to the output file, the boolean in namelist &obst_output has to be filled in.

Note: Variables dens_e, width_e, thick_e, theta, frac_xy, frac_z, a2d, s2d, s3d and drag are not allocated if not
wanted in output. If you do not need them, put False in the corresponding boolean to reduce space disk and memory
needs of your simulation

1.12.3.3.2 Using XIOS

XIOS can be used to output the same variables as in CROCO output file.

Example of a .xml field file for a case with one obstruction called “Obstruct”. The id of each field has to be coherent
with the given name of obstruction.

<field_group id="rho" grid_ref="rho_2D">
<field id="pos_Obstruct"
long_name="Obstruction occupation rate for Obstruct"
unit="-" grid_ref="rho_2D" />
<field id="height_f_Obstruct"
long_name="Obstruction forcing height for Obstruct"
unit="m" grid_ref="rho_2D" />
<field id="height_e_Obstruct"
long_name="Obstruction effective height for Obstruct"
unit="m" grid_ref="rho_2D" />
<field id="dens_f_Obstruct"
long_name="Obstruction forcing density for Obstruct"
unit="m-2" grid_ref="rho_2D" />
<field id="dens_e_Obstruct"
long_name="Obstruction effective density for Obstruct"
unit="m-2" grid_ref="rho_3D" />
<field id="width_f_Obstruct"
long_name="Obstruction forcing width for Obstruct"
unit="m" grid_ref="rho_2D" />
<field id="width_e_Obstruct"
long_name="Obstruction effective width for Obstruct"
unit="m" grid_ref="rho_3D" />
<field id="thick_f_Obstruct"
long_name="Obstruction forcing thickness for Obstruct"
unit="m" grid_ref="rho_2D" />
<field id="thick_e_Obstruct"
long_name="Obstruction effective thickness for Obstruct"
unit="m" grid_ref="rho_3D" />
<field id="theta_Obstruct"
long_name="Obstruction bending angle for Obstruct"
unit="deg" grid_ref="rho_3D" />
<field id="frac_xy_Obstruct"
long_name="Obstruction fragmentation correction factor for Obstruct"
unit="-" grid_ref="rho_2D" />
<field id="frac_z_Obstruct"
long_name="Obstruction sigma fraction for Obstruct"
unit="-" grid_ref="rho_2D" />
<field id="cd3d_Obstruct"

(continues on next page)

118 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

(continued from previous page)

long_name="Obstruction drag coefficient for Obstruct"
unit="-" grid_ref="rho_3D" />
<field id="a2d_Obstruct"
long_name="2D Obstruction horizontal area for Obstruct"
unit="-" grid_ref="rho_2D" />
<field id="a3d_Obstruct"
long_name="3D Obstruction horizontal area for Obstruct"
unit="-" grid_ref="rho_3D" />
<field id="s2d_Obstruct"
long_name="2D Obstruction vertical area for Obstruct"
unit="-" grid_ref="rho_2D" />
<field id="s3d_Obstruct"
long_name="3D Obstruction vertical area for Obstruct"
unit="-" grid_ref="rho_3D" />

<field id="a2d_NoTurb"
long_name="2D Obstruction horizontal area for NoTurb variables"
unit="-" grid_ref="rho_2D" />
<field id="a2d_Turb"
long_name="2D Obstruction horizontal area for Turb variables"
unit="-" grid_ref="rho_2D" />
<field id="a2d_All"
long_name="2D Obstruction horizontal area for All variables"
unit="-" grid_ref="rho_2D" />
<field id="a3d_NoTurb"
long_name="3D Obstruction horizontal area for NoTurb variables"
unit="-" grid_ref="rho_3D" />
<field id="a3d_Turb"
long_name="3D Obstruction horizontal area for Turb variables"
unit="-" grid_ref="rho_3D" />
<field id="a3d_All"
long_name="3D Obstruction horizontal area for All variables"
unit="-" grid_ref="rho_3D" />
<field id="s2d_NoTurb"
long_name="2D Obstruction vertical area for NoTurb variables"
unit="-" grid_ref="rho_2D" />
<field id="s2d_Turb"
long_name="2D Obstruction vertical area for Turb variables"
unit="-" grid_ref="rho_2D" />
<field id="s2d_All"
long_name="2D Obstruction vertical area for All variables"
unit="-" grid_ref="rho_2D" />
<field id="s3d_NoTurb"
long_name="3D Obstruction vertical area for NoTurb variables"
unit="-" grid_ref="rho_3D" />
<field id="s3d_Turb"
long_name="3D Obstruction vertical area for Turb variables"
unit="-" grid_ref="rho_3D" />
<field id="s3d_All"
long_name="3D Obstruction vertical area for All variables"
unit="-" grid_ref="rho_3D" />

<field id="fuzvz_uz"
long_name="Obstruction 3D friction force FUZ"
unit="N.m-2" grid_ref="rho_3D" />
<field id="fuzvz_vz"

(continues on next page)

1.12. Other modules : sediment models, flow-obstruction models, biology models 119

Croco Documentation, Release 2.0.0

(continued from previous page)

long_name="Obstruction 3D friction force FVZ"
unit="N.m-2" grid_ref="rho_3D" />
<field id="tau3d"
long_name="Obstruction 3D turbulent dissipation"
unit="N.m-2" grid_ref="rho_3D" />

</field_group>

1.12.3.4 Example

A test case is provided with cppkey #SEAGRASS. See SEAGRASS for more informations.

1.12.4 Biogeochemical models

CROCO comes with series of biogeochemical (BGC) models of increasing complexity, from relatively simple 5-
or 7-component NPZD [Gruber et al., 2006, Gruber et al., 2011] and N2P2Z2D2 BioEBUS model [Gutknecht et
al., 2013] that proved well suited to upwelling regions to 24-component PISCES [Aumont et al., 2005].

BioEBUS is a nitrogen-based model (Fig. 1) derived from a N2P2Z2D2 evolution of ROMS NPZD model [Gruber
et al., 2006, Gruber et al., 2011] and accounting for the main planktonic communities in upwelling ecosystems
associated oxygen minimum zones (OMZs). It is validated in Gutknecht et al. [2013] using available satellite and
in situ data in the northern part of the Benguela upwelling system. In this model, phytoplankton and zooplankton
are split into small (PS and ZS: flagellates and ciliates, respectively) and large (PL and ZL: diatoms and copepods,
respectively) organisms. Detritus are also separated into small and large particulate compartments (DS and DL). A
semi-labile dissolved organic nitrogen (DON) compartment was added since DON can be an important reservoir
of OM and can potentially play an important role in supplying nitrogen or carbon from the coastal region to the
open ocean [Huret et al., 2005]. The pool of dissolved inorganic nitrogen is split into nitrate (NO3-), nitrite (NO2-)
and ammonium (NH4+) species to have a detailed description of the microbial loop: ammonification/nitrification
processes under oxic conditions, and denitrification/anammox processes under suboxic conditions [Yakushev et
al., 2007]. These processes are directly oxygen dependent, so an oxygen (O2) equation was also introduced in
BioEBUS with the source term (photosynthesis), sink terms (zooplankton respiration, bacteria re-mineralisation)
and sea–air O2 fluxes following Coba De La Peña et al. [2010] and Yakushev et al. [2007]. To complete this
nitrogen-based model, nitrous oxide (N2O) was introduced using the parameterization of Suntharalingam et al.
[2000], Suntharalingam et al. [2012]. It allows determining the N2O production under oxygenated conditions and
at low-oxygen levels, mimicking the N2O production from nitrification and denitrification processes. The SMS
terms of BioEBUS and parameter values are described in detail in Gutknecht et al. [2013].

PISCES was developed for NEMO (the French ocean climate model). It was implemented in CROCO for its sup-
posed suitability for a wide range of oceanic regimes. PISCES currently has five modeled limiting nutrients for
phytoplankton growth: Nitrate and Ammonium, Phosphate, Silicate and Iron. Phosphate and nitrate+ammonium
are linked by constant Redfield ratios but the nitrogen pool undergoes nitrogen fixation and denitrification. Four
living compartments are represented: two phytoplankton size-classes/groups corresponding to nanophytoplankton
and diatoms, and two zooplankton size classes which are micro-zooplankton and mesozooplankton. For phyto-
plankton, prognostic variables are total biomass, the iron, chlorophyll and silicon contents. This means that the
Fe/C, Chl/C and Si/C ratios of both phytoplankton groups are fully predicted by the model. For zooplankton, only
the total biomass is modeled. For all species, the C/N/P/O2 ratios are supposed constant and are not allowed to
vary. The Redfield ratio O/C/N/P is set to 172/122/16/1. In addition, the Fe/C ratio of both zooplankton groups is
kept constant. No silicified zooplankton is assumed. The bacterial pool is not yet explicitly modeled. There are
three non-living compartments: semi-labile dissolved organic matter, small and big sinking particles. The iron,
silicon and calcite pools of the particles are explicitly modeled and their ratios are allowed to vary. The sinking
speed of the particles is not altered by their content in calcite and biogenic silicate (”The ballast effect”). The latter
particles are assumed to sink at the same speed as big organic matter particles. All the non-living compartments
experience aggregation due to turbulence and differential settling. In addition to the ecosystem model, PISCES
also simulates dissolved inorganic carbon, total alkalinity and dissolved oxygen. The latter tracer is also used to de-
fine the regions where oxic or anoxic remineralization takes place. See Aumont et al. [2005] in the documentation
section for details.

120 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Related CPP options:

PISCES Activate 24-component PISCES biogeochemical model
BIO_NChlPZD Activate 5-component NPZD type model
BIO_N2PZD2 Activate 7-component NPZD type model
BIO_BioEBUS Activate 12-component NPZD type model

Preselected options:

ifdef BIOLOGY
undef PISCES
define BIO_NChlPZD
undef BIO_N2ChlPZD2
undef BIO_BioEBUS
endif

1.12.5 Lagrangian floats

1.13 Coupling CROCO with other models

CROCO is coupled to atmospheric and wave models through the OASIS-MCT (Ocean-Atmosphere-Sea-Ice-Soil,
Model Coupling Toolkit) coupler developed by CERFACS (Toulouse, France). This coupler allows the atmo-
spheric, oceanic, and wave models to run at the s ame time in parallel, it exchanges variables, and performs grid
interpolations and time transformations if requested. OASIS is not an executable file, but a set of libraries pro-
viding functions which are called in the models themselves. The variables exchanged by the coupler, as well as the
grid interpolations are specified through a namelist file (called namcouple).

CROCO can therefore be coupled to any code in which OASIS-MCT is implemented. Non-exhaustively, here are
some models including OASIS-MCT, that can be coupled to CROCO:

• WRF (Weather Research and Forecast model developed at NCAR, Boulder, USA)

• Meso-NH (Mesoscale Non-Hydrostatic model developed at Laboratoire d’Aérologie, Toulouse, France)

• WW3 (WaveWatch III model developed at NCEP, USA, and Ifremer, France)

• . . .

Those model are not provided for download with CROCO and need to be installed separately, as well as OASIS-
MCT library.

A description of the OASIS-MCT features, its implementation in CROCO, WW3 and WRF codes, and the coupled
variables that can be exchanged are given in the following.

Datailed step by step coupled tutorial is also available in the Tutorials section.

1.13.1 OASIS philosophy

1.13.1.1 OASIS libraries

OASIS-MCT libraries are:

• psmile for coupling

• mct (Argonne National Laboratory) for parallel exchanges

• scrip (Los Alamos National Laboratory) for interpolations

1.13. Coupling CROCO with other models 121

Croco Documentation, Release 2.0.0

Functions provided by the OASIS-MCT framework are:

Note: oasis_ / prism_ are new / old names for backward compatibility, both useable

• Initialization and creation of a local communicator for internal parallel computation in each model:

– oasis_init_comp / prism_init_comp_proto

– oasis_get_localcomm / prism_get_localcomm_proto

• Grid data definition for exchanges and interpolations:

– oasis_write_grid

– oasis_write_corner

– oasis_write_area

– oasis_write_mask

– oasis_terminate_grids_writing

– Partition and exchanged variables definition:

∗ oasis_def_partition / prism_def_partition_proto

∗ oasis_def_var / prism_def_var_proto

∗ oasis_enddef / prism_enddef_proto

– Exchange of coupling fields:

∗ oasis_get / prism_get_proto

∗ oasis_put / prism_put_proto

– Finalization:

∗ oasis_terminate / prism_terminate_proto

These OASIS3-MCT intrinsic functions are called in each model involved in the coupling. Initialization phase,
Definition phase, and Finalization phase are called only once in each simulation while Exchange phase is called
every time step. The effective exchanges are done only at specified times, defined by the coupling frequency,
although the Exchange phase is called every model time step. The coupling frequency is controlled through the
OASIS3-MCT namcouple.

1.13.1.2 Coupling sequence

The frequency of exchanges between two models is defined by the coupling time step.

The coupling time step must be a multiple of the models time steps. An example of coupling sequence is pictured
in the following Figure. In this example, the coupling time step is defined at 360s for both models. The wave model
time step is 90s, so it will exchange every 4 time steps. The ocean model time step is 180s, so it will exchange
every 2 time steps.

Another coupling parameter defined in the namcouple is the lag. It is used by the OASIS coupler to synchronize
the send and receive functions. The lag must be defined for each model at the same value than its own time step.
For instance:

• WAVE to OCEAN lag = dt wave = 90

• OCEAN to WAVE lag = dt ocean = 180

122 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Therefore, receive and send functions have to be set at the same time in the model codes. OASIS will send the
fields at the appropriate time thanks to the lag defined in the namcouple.

The coupling sequence in each model is:

initialization oasis_time = 0
reception of coupled fields rcv(oasis_time)
model time stepping computation t -> t+dt
sending of coupled fields snd(oasis_time)
increment of coupling time oasis_time = oasis_time + dt

OASIS will exchange fields (get/put) if the time corresponds to a coupling time step, e.g. if:

• oasis_time corresponds to a coupling time step for get

• oasis_time + lag corresponds to a coupling time step for put

IN THE MODEL IN OASIS
receive (date) get(date)
send(date) put(date+lag)

OASIS is also able to store fields from a model if a time transformation is requested in the namcouple (keyword
LOCTRANS + type of transformation, see next section). OASIS will store the fields until a coupling time step
is reached, then it will apply the time transformation, interpolate spatially the field as specified in the namcouple,
and exchange the field with the other model.

1.13. Coupling CROCO with other models 123

Croco Documentation, Release 2.0.0

1.13.1.3 Restart files

As reception of coupled fields is called before model computation, you need to create restart files for the coupler
containing initial or restart fields for the first time step.

These restart files are for OASIS, and therefore need to have variable names corresponding to OASIS namcouple
coupled fields. The initial files for OASIS are named oasis_oce.nc and oasis_wave.nc in the example pirctured
in the above Figure. oce_ini and wave_ini are not related to OASIS, they are usual initialization or restart files
from your oceanic and wave model; e.g. in CROCO, oce_ini is croco_ini.nc, and in WW3, wave_ini is
restart.ww3).

Summary of the restart files:

• oasis_oce.nc, oasis_wave.nc: restart files for OASIS, you need to create them at the beginning of the
run, OASIS will overwrite them at the end of the run, and they will be available for next restart

• oce_ini, wave_ini: correspond to croco_ini.nc, restart.ww3. These are your ocean and wave model
initial or restart files

Practical example of the coupling sequence pictured in the above Figure:

oasis_time = 0
#1 => get field from oasis_wave.nc
rcv(0) => in oasis: get(0)
#2 => timestepping
t = 0+dt = 0+180 = 180
#3 => 180 is not a coupling time step, do nothing
snd(0) => in oasis: put(0+lag) = put(0+180) = put(180)
oasis_time = oasis_time+dt = 0+180 = 180
#4 => 180 is not a coupling time step, do nothing
rcv(180) => in oasis: get(180)
#5 => timestepping
t = 180+dt = 180+180 = 360
#6 => 360 is a coupling time step, put field
snd(180) => in oasis: put(180+lag) = put(180+180) = put(360)

1.13.1.4 Interpolations

The OASIS3-MCT coupler can process time transformations and 2D spatial interpolations of the exchanged fields.
The 2D spatial interpolation, requested if models have different grids, is performed by the scrip library using
SCRIPR keyword in the namcouple. Available interpolation types are:

BILINEAR interpolation based on a local bilinear approximation
BICUBIC interpolation based on a local bicubic approximation
CONSERV 1st or 2nd order conservative remapping
DISTWGT distance weighted nearest-neighbour interpolation (N

neighbours)
GAUSWGT

N nearest-neighbour interpolation weighted by their
distance
and a gaussian function

See OASIS manual for detailed informations.

Time transformations can also be performed by OASIS using LOCTRANS keywork in the namcouple. Available
transformations are:

124 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

INSTANT no time transformation, the instantaneous field is
transfered

ACCUMUL the field accumulated over the previous coupling pe-
riod is exchanged

AVERAGE the field averaged over the previous coupling period is
transfered

T_MIN

the minimum value of the field for each source grid
point over the
previous coupling period is transfered

T_MAX

the maximum value of the field for each source grid
point over the
previous coupling period is transfered

1.13.2 Detailed OASIS implementation

1.13.2.1 In CROCO

The following routines are specifically built for coupling with OASIS and contain calls to OASIS intrinsic functions:

• cpl_prism_init.F: Manage the initialization phase of OASIS3-MCT : local MPI communicator

• cpl_prism_define.F: Manage the definition phase of OASIS3-MCT: domain partition, name of exchanged
fields as read in the namcouple

• cpl_prism_grid.F: Manage the definition of grids for the coupler

• cpl_prism_put.F: Manage the sending of arrays from CROCO to the OASIS3-MCT coupler

• cpl_prism_getvar.F: Manage the generic reception from OASIS3-MCT.

• cpl_prism_get.F: Manage the specificity of each received variable: C-grid position, and field unit trans-
formations

These routines are called in the the code in:

• main.F: Initialization, and finalization phases

• get_initial.F: Definition phase

• zoom.F: Initialization phase for AGRIF nested simulations

• step.F: Exchanges (sending and reception) of coupling variables

Other CROCO routines have also been slightly modified to introduce coupling:

• testkeys.F: To enable automatic linking to OASIS3-MCT libraries during compilation with jobcomp

• cppdefs.h: Definition of the OA_COUPLING and OW_COUPLING cpp-keys, and the other related and re-
quested cpp-keys, as MPI

• set_global_definitions.h: Definition of cpp-keys in case of coupling (undef OPENMP, define MPI,
define MPI_COMM_WORLD ocean_grid_comm: MPI_COMM_WORLD generic MPI communicator is re-
defined as the local MPI communicator ocean_grid_comm, undef BULK_FLUX: no bulk OA parametriza-
tion)

• mpi_roms.h: Newly added to define variables related to OASIS3-MCT operations. It manage the MPI
communicator, using either the generic MPI_COMM_WORLD, either the local MPI communicator created
by OASIS3-MCT

1.13. Coupling CROCO with other models 125

Croco Documentation, Release 2.0.0

• read_inp.F: Not reading atmospheric forcing files (croco_frc.nc and/or croco_blk.nc) in OA coupled
mode

A schematic picture of the calls in CROCO is (with # name.F indicating the routine we enter in):

main.F
if !defined AGRIF
call cpl_prism_init
else
call Agrif_MPI_Init
endif
...
call read_inp
...
call_get_initial

get_initial.F
...
call cpl_prism_define

cpl_prism_define.F
call prism_def_partition_proto
call cpl_prism_grid
call prism_def_var_proto
call prism_enddef_proto

oasis_time=0
main.F
...
DO 1:NT
call step

step.F
if ((iif==-1).and.(oasis_time>=0).and.(nbstep3d<ntimes)) then

call cpl_prism_get(oasis_time)
cpl_prism_get.F
call cpl_prism_getvar

endif
call prestep3d

call get_vbc
...

call step2d
...
call step3d_uv
call step3d_t
iif = -1
nbstep3d = nbstep3d + 1
if (iif==-1) then

if (oasis_time>=0.and.(nbstep3d<ntimes)) then
call cpl_prism_put (oasis_time)
oasis_time = oasis_time + dt

endif
endif

main.F
END DO
...
call prism_terminate_proto
...

126 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.13.2.2 In WW3

The following routines have been specifically built for coupling with OASIS:

• w3oacpmd.ftn: main coupling module with calls to oasis intrinsic functions

• w3agcmmd.ftn: module for coupling with an atmospheric model

• w3ogcmmd.ftn: module for coupling with an ocean model

The following routines have been modified for coupling with OASIS:

• w3fldsmd.ftn: routine that manage input fields, and therefore received fields from the coupler

• w3wdatmd.ftn: routine that manage data structure for wave model, and therefore time for coupling

• w3wavemd.ftn: actual wave model, here is located the sending of coupled variables

• ww3_shel.ftn: main routine managing the wave model, definition/initialisation/partition phases are located
here

A schematic picture of the calls in WW3 is given here:

1.13.2.3 In WRF

The routines specifically built for coupling are:

• module_cpl_oasis3.F

• module_cpl.F

Implementation of coupling with the ocean implies modifications in the following routines:

• phys/module_bl_mynn.F

• phys/module_bl_ysu.F

• phys/module_pbl_driver.F

• phys/module_surface_driver.F

• phys/module_sf_sfclay.F

• phys/module_sf_sfclayrev.F

Implementation of coupling with waves implies modifications in the following routines:

• Regristry/Registry.EM_COMMON: CHA_COEF added

• dyn/module_first_rk_step_part1.F: CHA_COEF=grid%cha_coef declaration added

• frame/module_cpl.F: rcv CHA_COEF added

• phys/module_sf_sfclay.F and ..._sfclayrev.F: introduction of wave coupled case: isftcflx=5 as
follows:

1.13. Coupling CROCO with other models 127

Croco Documentation, Release 2.0.0

! SJ: change charnock coefficient as a function of waves, and hence roughness
! length
IF (ISFTCFLX.EQ.5) THEN
ZNT(I)=CHA_COEF(I)*UST(I)*UST(I)/G+0.11*1.5E-5/UST(I)

ENDIF

• phys/module_surface_driver.F: CHA_COEF added in calls to sfclay and sfclayrev and “CALL
cpl_rcv” for CHA_COEF

Schematic picture of WRF architecture and calls to the coupling dependencies:

main/wrf.F
CALL wrf_init

main/module_wrf_top.F
CALL wrf_dm_initialize

frame/module_dm.F
CALL cpl_init(mpi_comm_here)
CALL cpl_abort('wrf_abort', 'look for abort message in rsl* files')

CALL cpl_defdomain(head_grid)

main/wrf.F
CALL wrf_run

main/module_wrf_top.F
CALL integrate (head_grid)

frame/module_integrate.F
CALL cpl_defdomain(new_nest)
CALL solve_interface (grid_ptr)

share/solve_interface.F
CALL solve_em (grid , config_flags ...)

dyn_em/solve_em.F
curr_secs2 # time for the coupler
CALL cpl_store_input(grid, config_flags)
CALL cpl_settime(curr_secs2)
CALL first_rk_step_part1

dyn_em/module_first_rk_step_part1.F
CALL surface_driver(...)

phys/module_surface_driver.F
CALL cpl_rcv(id, ...)
u_phytmp(i,kts,j)=u_phytmp(i,kts,j)-uoce(i,j)
v_phytmp(i,kts,j)=v_phytmp(i,kts,j)-voce(i,j)

CALL SFCLAY(... cha_coef ...)
phys/module_sf_sfclay.F
CALL SFCLAY1D
IF (ISFTCFLX.EQ.5) THEN
ZNT(I)=CHA_COEF(I)*UST(I)*UST(I)/G+0.11*1.5E-5/UST(I)

ENDIF

(continues on next page)

128 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

(continued from previous page)

CALL SFCLAYREV(... cha_coef ...)
phys/module_sf_sfclayrev.F
CALL SFCLAYREV1D
IF (ISFTCFLX.EQ.5) THEN
ZNT(I)=CHA_COEF(I)*UST(I)*UST(I)/G+0.11*1.5E-5/UST(I)

ENDIF

dyn_em/module_first_rk_step_part1.F
CALL pbl_driver(...)

phys/module_pbl_driver.F
CALL ysu(... uoce,voce, ...)
module_bl_ysu.F
call ysu2d (... uox,vox, ...)
wspd1(i) = sqrt((ux(i,1)-uox(i))*(ux(i,1)-uox(i))

+ (vx(i,1)-vox(i))*(vx(i,1)-vox(i)))+1.e-9
f1(i,1) = ux(i,1)+uox(i)*ust(i)**2*g/del(i,1)*dt2/wspd1(i)
f2(i,1) = vx(i,1)+vox(i)*ust(i)**2*g/del(i,1)*dt2/wspd1(i)

CALL mynn_bl_driver(... uoce,voce, ...)
module_bl_mynn.F
d(1)=u(k)+dtz(k)*uoce*ust**2/wspd
d(1)=v(k)+dtz(k)*voce*ust**2/wspd

dyn_em/solve_em.F
CALL first_rk_step_part2

frame/module_integrate.F
CALL cpl_snd(grid_ptr)

Check where this routine is called...
frame/module_io_quilt.F # for IO server (used with namelist variable: nio_tasks_

→˓per_group
CALL cpl_set_dm_communicator(mpi_comm_local)
CALL cpl_finalize()

main/wrf.F
CALL wrf_finalize

#main/module_wrf_top.F
CALL cpl_finalize()

1.13.3 Coupled variables

1.13.3.1 Coupling with an atmospheric model

When coupling CROCO to an atmospheric model, to have a consistent interface, you should use momentum and
heat fluxes computed from the atmospheric model bulk formula.

No surface forcing file is required (only boundary forcing, and eventually tidal forcing).

The following cpp-keys have to be set:

define OA_COUPLING
define MPI

(continues on next page)

1.13. Coupling CROCO with other models 129

Croco Documentation, Release 2.0.0

(continued from previous page)

undef BULK_FLUX
undef SMFLUX_CFB

Note: SMFLUX_CFB is a cpp-key to use a wind stress relative to the current in forced mode. In coupled mode, as
current is sent to the atmosphere, the wind stress from the atmospheric model account for such a current feedback.

130 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fields sent by CROCO
Name (units) name and eventual oper. in the

model
OASIS name

SST (K) t(:,:,N,nnew,itemp) + 273.15 CROCO_SST
U-component of current (m/s)

u (at rho points):

0.5*(u(1:Lmmpi,1:Mmmpi,N,nnew)

+u(2:Lmmpi+1,1:Mmmpi,N,nnew))

CROCO_UOCE

V-component of current (m/s)

v (at rho points):

0.5*(v(1:Lmmpi,1:Mmmpi,N,nnew)

+v(1:Lmmpi,2:Mmmpi+1,N,nnew))

CROCO_VOCE

Eastward component of current
(m/s)

u (at rho points) rotated eastwards
(useful for rotated grids)
(0.5 * (u(1:Lmmpi
,1:Mmmpi,N,nnew)
+
u(2:Lmmpi+1,1:Mmmpi,N,nnew))
)
* cos(angler(1:Lmmpi
,1:Mmmpi))
- (0.5 * (v(1:Lmmpi,1:Mmmpi
,N,nnew)
+
v(1:Lmmpi,2:Mmmpi+1,N,nnew))
)
* sin(angler(1:Lmmpi
,1:Mmmpi))

+u(2:Lmmpi+1,1:Mmmpi,N,nnew))

CROCO_EOCE

Northward component of current
(m/s)

v (at rho points) rotated northward
(useful for rotated grids)
(0.5 * (u(1:Lmmpi
,1:Mmmpi,N,nnew)
+
u(2:Lmmpi+1,1:Mmmpi,N,nnew))
)
* sin(angler(1:Lmmpi
,1:Mmmpi))
+ (0.5 * (v(1:Lmmpi,1:Mmmpi
,N,nnew)
+
v(1:Lmmpi,2:Mmmpi+1,N,nnew))
)
* cos(angler(1:Lmmpi
,1:Mmmpi))

CROCO_NOCE

1.13. Coupling CROCO with other models 131

Croco Documentation, Release 2.0.0

Fields received by CROCO
Name (units) name and eventual oper. in the

model
OASIS name

U component of wind stress
(N/m2)

sustr (at u point):
0.5*(FIELD(io-
1,jo)+FIELD(io,jo))/rho0
if eastward, it is first rotated:
FIELD = etau * cos(angler)

+ ntau * sin(angler)

CROCO_UTAW or
CROCO_ETAW

V component of wind stress
(N/m2)

svstr (at v point):
0.5*(FIELD(io,jo-
1)+FIELD(io,jo))/rho
if northward, it is first rotated:
FIELD = ntau * cos(angler)

- etau * sin(angler)

CROCO_VTAW or
CROCO_NTAW

Wind stress module (N/m2) smstr = FIELD / rho0 CROCO_TAUM
Surface net solar flux (W/m2) srflx = FIELD / (rho0*Cp) CROCO_SRFL
Surface net non-solar flux (W/m2) stflx(:,:,itemp) = FIELD /

(rho0*Cp)
CROCO_STFL

Evaporation-Precipitation
(kg/m2/s)

stflx(:,:,isalt) = FIELD / 1000 CROCO_EVPR

Surface atmospheric pressure (Pa) patm2d = FIELD CROCO_PSFC

Fields received by WRF
Name (units) name (in the model) OASIS name
SST (K) SST WRF_d01_EXT_d01_SST
U component of current (m/s) UOCE WRF_d01_EXT_d01_UOCE
V component of current (m/s) VOCE WRF_d01_EXT_d01_VOCE
Eastward component of current (m/s) EOCE WRF_d01_EXT_d01_EOCE
Northward component of current (m/s) NOCE WRF_d01_EXT_d01_NOCE

132 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fields sent by WRF
Name (units) name (in the model) OASIS name
Surface net solar flux (W/m2) GSW WRF_d01_EXT_d01_SURF_NET_SOLAR
Surface net non-solar flux
(W/m2)

GLW-
STBOLT*EMISS*SST**4-
LH-HFX

WRF_d01_EXT_d01_SURF_NET_NON-
SOLAR

Evaporation-precipitation
(kg/m2/s)

QFX-(RAINCV+RAINNCV)/DT WRF_d01_EXT_d01_EVAP-PRECIP

Surface atmospheric pressure
(Pa)

PSFC WRF_d01_EXT_d01_PSFC

Wind stress module (N/m2) taut = rho * ust**2 WRF_d01_EXT_d01_TAUMOD
U component of wind stress
(N/m2)

taui = taut * u_uo / wspd WRF_d01_EXT_d01_TAUX

V component of wind stress
(N/m2)

tauj = taut * v_uo / wspd WRF_d01_EXT_d01_TAUY

Eastward comp. of wind
stress(N/m2)

cosa * taui - sina * tauj WRF_d01_EXT_d01_TAUE

Northward comp. of wind
stress(N/m2)

cosa * tauj + sina * taui WRF_d01_EXT_d01_TAUN

Note: If you decide to couple CROCO with multiple WRF domains, variables coming from WRF will be defined
by adding _EXT*. Here * corresponds to which domains the variable is coming (1=Parent, 2=Nest 1 ,. . .).

1.13.3.2 Coupling with a wave model

When coupling CROCO to a wave model, the wave-current interactions have to be set on. At the moment, only
mean wave parameters are exchanged, their contribution to ocean dynamics is computed into the wave-current
interaction routine in CROCO.

The following cpp-keys have to be set:

define OW_COUPLING
define MPI

define MRL_WCI

Note: You also have to be careful to the choice of the momentum flux. For better consistency, here we suggest to
account for the momentum flux seen by the wave model, and thus set:

undef BULK_FLUX
define WAVE_SMFLUX

1.13. Coupling CROCO with other models 133

Croco Documentation, Release 2.0.0

Fields sent by CROCO
Name (units) name and eventual oper. in the

model
OASIS name

SSH (m) zeta CROCO_SSH
U-component of current (m/s)

u (at rho points):

0.5*(u(1:Lmmpi,1:Mmmpi,N,nnew)

+u(2:Lmmpi+1,1:Mmmpi,N,nnew))

CROCO_UOCE

V-component of current (m/s)

v (at rho points):

0.5*(v(1:Lmmpi,1:Mmmpi,N,nnew)

+v(1:Lmmpi,2:Mmmpi+1,N,nnew))

CROCO_VOCE

Eastward component of current
(m/s)

u (at rho points) rotated to east
(useful for rotated grids)
(0.5 * (u(1:Lmmpi
,1:Mmmpi,N,nnew)
+
u(2:Lmmpi+1,1:Mmmpi,N,nnew))
)
* cos(angler(1:Lmmpi
,1:Mmmpi))
- (0.5 * (v(1:Lmmpi,1:Mmmpi
,N,nnew)
+
v(1:Lmmpi,2:Mmmpi+1,N,nnew))
)
* sin(angler(1:Lmmpi
,1:Mmmpi))

+u(2:Lmmpi+1,1:Mmmpi,N,nnew))

CROCO_EOCE

Northward component of current
(m/s)

v (at rho points) rotated to north
(useful for rotated grids)
(0.5 * (u(1:Lmmpi
,1:Mmmpi,N,nnew)
+
u(2:Lmmpi+1,1:Mmmpi,N,nnew))
)
* sin(angler(1:Lmmpi
,1:Mmmpi))
+ (0.5 * (v(1:Lmmpi,1:Mmmpi
,N,nnew)
+
v(1:Lmmpi,2:Mmmpi+1,N,nnew))
)
* cos(angler(1:Lmmpi
,1:Mmmpi))

CROCO_NOCE

134 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fields received by CROCO
Name (units) name and eventual oper. in the

model
OASIS name

Significant wave height (m) whrm = FIELD * 0.70710678 CROCO_HS
Mean wave period (s) -> frequency wfrq = 2*pi / FIELD CROCO_T0M1
Mean wave direction -> wavenum-
bers

wdrx = cos(FIELD - angler)
wdre = sin(FIELD - angler)

CROCO_DIR

U component of wave stress
(m2/s2)

twox (at u point):
0.5*(FIELD(io-
1,jo)+FIELD(io,jo))
if eastward, it is first rotated:
FIELD = etwo * cos(angler)

+ ntwo * sin(angler)

CROCO_UTWO or
CROCO_ETWO

V component of wave stress
(m2/s2)

twoy (at v point):
0.5*(FIELD(io,jo-
1)+FIELD(io,jo))
if northward, it is first rotated:
FIELD = ntwo * cos(angler)

- etwo * sin(angler)

CROCO_VTWO or
CROCO_NTWO

U comp. of wind-to-wave stress
(m2/s2)

tawx (at u point):
0.5*(FIELD(io-
1,jo)+FIELD(io,jo))
if eastward, it is first rotated:
FIELD = etaw * cos(angler)

+ ntaw * sin(angler)

CROCO_UTAW or
CROCO_ETAW

V comp. of wind-to-wave stress
(m2/s2)

tawy (at v point):
0.5*(FIELD(io,jo-
1)+FIELD(io,jo))
if northward, it is first rotated:
FIELD = ntaw * cos(angler)

- etaw * sin(angler)

CROCO_VTAW or
CROCO_NTAW

1.13. Coupling CROCO with other models 135

Croco Documentation, Release 2.0.0

Other optional fields enventually sent, if not, they are analytically computed in the MRL_WCI routine
Bernoulli head pressure (N/m) bhd CROCO_BHD
Wave-to-ocean TKE flux
(W/m2)

foc CROCO_FOC

Mean wavelength (m) wlm CROCO_LM
Wave orbital bottom velocity
(m/s)

ubr = sqrt(ubrx**2+ubry**2) CROCO_UBRX and
CROCO_UBRY

Stokes drift surface velocity
(m/s)

ust_ext =
sqrt(ustx_ext**2+usty_ext**2)

CROCO_USSX and
CROCO_USSY

Fields received by WW3
Name (units) name (in the model) OASIS name
SSH = water level (m) LEV WW3__SSH
Zonal current (m/s) CUR WW3_OSSU
Meridional current (m/s) CUR WW3_OSSV

Fields sent by WW3
Name (units) name (in the model) OASIS name
Mean wave period (s) T0M1 WW3_T0M1
Significant wave height (m) HS WW3__OHS
Mean wave direction THM WW3__DIR
Zonal wave stress (N/m2) TWOX WW3_TWOX
Meridional wave stress (N/m2) TWOY WW3_TWOY
Zonal wind stress (N/m2) TAWX WW3_TAWX
Meridional wind stress(N/m2) TAWY WW3_TAWY
Other fields possibly sent, but not used in coupling with CROCO at the moment
Bernoulli head pressure (N/m) BHD WW3__BHD
Bottom orbital velocity (m/s) UBR WW3__UBR
Wave-to-ocean TKE flux (W/m2) FOC WW3__FOC
Mean wavelength (m) LM WW3___LM
Wave peak frequency (/s) FP WW3___FP

1.13.3.3 Coupling atmosphere and wave models

Fields received by WW3
Name (units) name (in the model) OASIS name
Zonal wind (m/s) WND WW3__U10
Meridional wind (m/s) WND WW3__V10

Fields sent by WW3
Name (units) name (in the model) OASIS name
Significant wave height (m) HS WW3__AHS
Charnock coefficient ACHA WW3_ACHA

136 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fields sent by WRF
Name (units) name (in the model) OASIS name
Zonal wind at first level((m/s) u_uo WRF_d01_EXT_d01_WND_E_01
Meridional wind at first level (m/s) v_vo WRF_d01_EXT_d01_WND_N_01

Fields received by WRF
Name (units) name (in the model) OASIS name
Charnock coefficient CHA_COEF WRF_d01_EXT_d01_CHA_COEF

1.13.3.4 Note on momentum flux when coupling 3 models

As the wave model has a quite complex parameterization of wave generation by winds, which is in subtle balance
with the wave dissipation, the wind stress for the wave model is computed by its own parameterization. Therefore,
to ensure energetic consistency of the momentum flux when coupling 3 models, we prescribe the wind stress in
CROCO as:

sustr = sustr_from_atm_model - tawx + twox
svstr = svstr_from_atm_model - tawy + twoy

where taw is stress from atm to waves
and two is stress from waves to ocean

1.13.3.5 Note on coupling with AGRIF

You may decide to coupled CROCO while using AGRIF. To do so, the variables sent by the parent domain (0) and
the child domains (1,2,. . .) must be separated. Thus the variables sent, in case of using AGRIF, take the radical
defined above (CROCO_VAR) to which we add _0 (for parent) or _1 (for first child). This gives, for example for
variable SST, CROCO_SST_0 or CROCO_SST_1 for parent and child respectively.

For the variables received by CROCO, we will use its ability to handle CPLMASK. Each of the domains (parent
or children) will be assigned a coupling mask named coupling_mask0.nc (parent), coupling_mask1.nc (child 1),
each coupling mask being relative to its grid. The CROCO domain that receives a variable will be identified by its
mask (CPLMASK*), which will be added to the previous radical. This will give CROCO_VAR_CPLMASK0 for
the parent or CROCO_VAR_CPLMASK1 for child 1.

This makes it easy to define the received variables in a case where one decides to couple CROCO-AGRIF with
several WRF domains. In this case the variables will have the nomenclature CROCO_VAR_CPLMASK0 for the parent
CROCO to which we add _EXT1 for the first domain of coupling_mask0.nc. By continuity _EXT2 will correspond
to domain 2 of coupling_mask0.nc. Then the variables received by CROCO, in a case of CROCO-AGRIF/WRF-
nest simulation, will follow the format CROCO_VAR_CPLMASK*_EXT*.

1.13.4 Grids

1.13.4.1 OASIS grid files

OASIS manage grids and interpolations by using dedicated grid files:

• grids.nc

• masks.nc

• areas.nc (requested only for some of the interpolation types)

1.13. Coupling CROCO with other models 137

Croco Documentation, Release 2.0.0

These files can be automatically created by OASIS functions called in each model, or can be created by the user in
advance if specificities are requested. Some facilities are provided in croco_tools/Coupling_tools to create
such grids.

If grids.nc, masks.nc, areas.nc exist in the working directory, they won’t be overwritten by OASIS functions.
So, be sure to have the good files or remove them before running the coupled model.

1.13.4.2 Multiple model grids (nesting case)

Multiple nested grids in the different models can be used in coupled mode.

The variables are therefore exchanged from/to the different grids. To do so, each coupled variable is identified in
the coupler with its grid number:

• For CROCO the last character of the OASIS variable name defines the domain

– 0 being the parent domain

– 1 the first child domain, etc.

• For WRF the domains are defined by d01, d02, etc, and the target domain (CROCO for instance), by
EXT_d01, EXT_d02, etc.

For example if you are coupling 2 CROCO domains to one atmospheric domain, you will specify 2 types of
exchanges in the namcouple:

exchange between CROCO parent domain to WRF domain
SRMSSTV0 WRF_d01_EXT_d01_SST

exchange between CROCO child domain to WRF domain
SRMSSTV1 WRF_d01_EXT_d02_SST

If you are coupling 2 WRF domains to one CROCO domain:

exchange between WRF d01 domain to CROCO domain
WRF_d01_EXT_d01_TAUMOD RRMTAUM0

exchange between WRF d02 domain to CROCO domain
WRF_d02_EXT_d01_TAUMOD RRMTAUM0

Related CPP options:

OW_COUPLING Activate Ocean-Wave coupling
OA_COUPLING Activate Ocean-Atmosphere coupling
OA_MCT Use OASIS-MCT for coupling

Preselected options:

#undef OA_COUPLING
#undef OW_COUPLING

138 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.14 I/O and Online Diagnostics

Basic CPP options:

AVERAGES Process and output time-averaged data
AVERAGES_K Process and output time-averaged vertical mixing
XIOS Use XIOS IO server (only version >= 2 is supported)

XIOS is an external library for output (developed at IPSL) providing for flexibility and design to improve perfor-
mances for HPC : see http://forge.ipsl.jussieu.fr/ioserver

Preselected options:

define AVERAGES
define AVERAGES_K
undef XIOS

Advanced diagnostics CPP options:

DIAG-
NOS-
TICS_TS

Store and output budget terms of the tracer equations

DIAG-
NOS-
TICS_TS_ADV

Choose advection rather than transport formulation for tracer budgets

DIAG-
NOS-
TICS_TS_MLD

Integrate tracer budgets over the mixed-layer depth

DIAG-
NOS-
TICS_TSVAR

Store and output budget terms of the tracer variance equations (instead of tracer)

DIAG-
NOS-
TICS_UV

Store and output budget terms of the momentum equations.

DIAG-
NOS-
TICS_BARO

Isolate contribution from barotropic/baroclinic coupling (included in the vertical mixing term oth-
erwise) for momentum, barotropic vorticity and kinetic energy budgets

DIAG-
NOS-
TICS_VRT

Store and output budget terms of the barotropic vorticity equation

DIAG-
NOS-
TICS_EK

Store and output budget terms of the kinetic energy equation (vertically integrated)

DIAG-
NOS-
TICS_EDDY

Store and output time-averaged quadratic quantities u^2, v^2, u*v, u*w, v*w, u*b, v*b, w*b,
u*sustr, v*svstr, u*bustr, v*bvstr, zeta^2

DIAG-
NOS-
TICS_PV

Store and output non conservative term in the momentum equations and diabatic term in the tracer
equations. if DIAGNOSTICS_DISS is also defined, terms are multiplied by momentum and ther-
mal/saline expension coefficients to be used to estimate kinetic and potential energy dissipation.

The different budgets and their computation are detailled in https://www.jgula.fr/Croco/diagnostics_croco.pdf

Preselected options:

undef DIAGNOSTICS_TS Store and output budget terms of the tracer equations
undef DIAGNOSTICS_TS_ADV Choose advection rather than transport formulation for␣

(continues on next page)

1.14. I/O and Online Diagnostics 139

http://forge.ipsl.jussieu.fr/ioserver
https://www.jgula.fr/Croco/diagnostics_croco.pdf

Croco Documentation, Release 2.0.0

(continued from previous page)

→˓tracer budgets
undef DIAGNOSTICS_TS_MLD Integrate tracer budgets over the mixed-layer depth
undef DIAGNOSTICS_TSVAR output budgets of tracer variance instead of tracer
undef DIAGNOSTICS_UV Store and output budget terms of the momentum equations
undef DIAGNOSTICS_BARO Isolate contribution from barotropic/baroclinic coupling
undef DIAGNOSTICS_VRT Store and output budget terms of the barotropic vorticity␣
→˓equation
undef DIAGNOSTICS_EK Store and output budget terms of the kinetic energy␣
→˓equation (vertically integrated)
undef DIAGNOSTICS_PV Store and output non conservative / diabatic terms
undef DIAGNOSTICS_EDDY Store and output time-averaged quadratic quantities

1.15 Review of test cases

1.15.1 Basin

This is a rectangular, flat-bottomed basin with double-gyre wind forcing. It produces a western boundary current
flowing into a central Gulf Stream which goes unstable and generates eddies if resolution is increased.

define BASIN

CPP options:

undef OPENMP
undef MPI
define UV_ADV
define UV_COR
define UV_VIS2
define SOLVE3D
define TS_DIF2
define BODYFORCE
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_BTFLUX
define NO_FRCFILE

Settings :
Results :

140 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 13: BASIN results : density (up) and sea surface elevation (down)

1.15. Review of test cases 141

Croco Documentation, Release 2.0.0

1.15.2 Canyon

define CANYON

CPP options:

undef OPENMP
undef MPI
define CANYON_STRAT
define UV_ADV
define UV_COR
define SOLVE3D
define EW_PERIODIC
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_BTFLUX
define NO_FRCFILE

Settings :
Results :

142 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 14: CANYON results : density (up) and sea surface elevation (down)

1.15. Review of test cases 143

Croco Documentation, Release 2.0.0

1.15.3 Equator

Boccaletti et al. [2004]

define EQUATOR

CPP options:

undef OPENMP
undef MPI
define UV_ADV
define UV_COR
define UV_VIS2
define SOLVE3D
define TS_DIF2
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_SRFLUX
define ANA_SSFLUX
define ANA_BTFLUX
define ANA_BSFLUX
define QCORRECTION
define ANA_SST
define LMD_MIXING
define LMD_RIMIX
define LMD_CONVEC
define NO_FRCFILE

Settings :
Results :

144 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 15: EQUATOR results : temperature , time evolution (up) vertical section (down)

Fig. 16: EQUATOR results : speed (up) and sea surface elevation (down)

1.15. Review of test cases 145

Croco Documentation, Release 2.0.0

1.15.4 Inner Shelf

Compare wind driven innershelf dynamics between 2D Ekman theory and CROCO numerical solution [Estrade et
al., 2008, Marchesiello and Estrade, 2010].

define INNERSHELF

CPP options:

undef OPENMP
undef MPI
undef NBQ
define INNERSHELF_EKMAN
define INNERSHELF_APG
define SOLVE3D
define UV_COR
define ANA_GRID
define ANA_INITIAL
define AVERAGES
define ANA_SSFLUX
define ANA_SRFLUX
define ANA_STFLUX
define ANA_BSFLUX
define ANA_BTFLUX
define ANA_SMFLUX
define NS_PERIODIC
define OBC_WEST
define SPONGE
ifndef INNERSHELF_EKMAN
define UV_ADV
define SALINITY
define NONLIN_EOS
define LMD_MIXING
undef GLS_MIXING
ifdef LMD_MIXING
define LMD_SKPP
define LMD_BKPP
define LMD_RIMIX
define LMD_CONVEC
endif
undef WAVE_MAKER_INTERNAL
ifdef WAVE_MAKER_INTERNAL
define ANA_BRY
define Z_FRC_BRY
define M2_FRC_BRY
define M3_FRC_BRY
define T_FRC_BRY
endif
endif
define NO_FRCFILE

Settings :
Results :

146 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 17: INNERSHELF results : comparison with analytical solution

1.15. Review of test cases 147

Croco Documentation, Release 2.0.0

1.15.5 River Runoff

define RIVER

CPP options:

undef OPENMP
undef MPI
define SOLVE3D
define UV_ADV
define UV_COR
define NONLIN_EOS
define SALINITY
define ANA_GRID
define MASKING
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_SSFLUX
define ANA_SRFLUX
define ANA_BTFLUX
define ANA_BSFLUX
define LMD_MIXING
define LMD_SKPP
define LMD_BKPP
define LMD_RIMIX
define LMD_CONVEC
define PSOURCE
define ANA_PSOURCE
define NS_PERIODIC
undef FLOATS
ifdef FLOATS
define RANDOM_WALK
ifdef RANDOM_WALK
define DIEL_MIGRATION
define RANDOM_VERTICAL
define RANDOM_HORIZONTAL
endif
endif
define NO_FRCFILE

Settings :
Results :

Fig. 18: RIVER results : river plume

148 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.6 Gravitational/Overflow

define OVERFLOW

CPP options:

undef OPENMP
undef MPI
define UV_ADV
define UV_COR
define UV_VIS2
define TS_DIF2
define TS_MIX_GEO
define SOLVE3D
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_BTFLUX
define NO_FRCFILE

Setting :
Results :

Fig. 19: OVERFLOW results : initial state (up) and density evolution (down)

1.15. Review of test cases 149

Croco Documentation, Release 2.0.0

1.15.7 Seamount

define SEAMOUNT

CPP options:

undef OPENMP
undef MPI
define UV_ADV
define UV_COR
define SOLVE3D
define SALINITY
define NONLIN_EOS
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_SSFLUX
define ANA_SRFLUX
define ANA_BTFLUX
define ANA_BSFLUX
define NO_FRCFILE

Settings :
Results :

Fig. 20: SEAMOUNT results : bottom speed

150 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.8 Shelf front

define SHELFRONT

CPP options:

undef OPENMP
undef MPI
define UV_ADV
define UV_COR
define SOLVE3D
define SALINITY
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_SSFLUX
define ANA_SRFLUX
define ANA_BTFLUX
define ANA_BSFLUX
define EW_PERIODIC
define NO_FRCFILE

Settings :
Results :

Fig. 21: SHELFRONT results : temerature profile

1.15. Review of test cases 151

Croco Documentation, Release 2.0.0

1.15.9 Equatorial Rossby Wave

This test problem considers the propagation of a Rossby soliton on an equatorial beta-plane, for which an asymp-
totic solution exists to the inviscid, nonlinear shallow water equations. In principle, the soliton should propagate
westwards at fixed phase speed, without change of shape. Since the uniform propagation and shape preservation of
the soliton are achieved through a delicate balance between linear wave dynamics and nonlinearity, this is a good
context in which to look for erroneous wave dispersion and/or numerical damping.

The problem is nondimensionalized with: H = 40 cm, L=295 km, T = 1.71 days and U=L/T=1.981 m/s. Theorical
propagation speed is 0.4 (0.395) so that at t=120, the soliton should be back to its initial position after crossing the
periodic channel of length 48.

Boyd [1980]

define SOLITON

CPP options:

undef OPENMP
undef MPI
define UV_COR
define UV_ADV
define ANA_GRID
define ANA_INITIAL
define AVERAGES
define EW_PERIODIC
define ANA_SMFLUX
define NO_FRCFILE

Settings :
Results :

Fig. 22: SOLITON results : sea surface evolution

152 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.10 Thacker

Thacker [1981]

define THACKER

CPP options:

undef OPENMP
undef MPI
define THACKER_2DV
define SOLVE3D
define UV_COR
define UV_ADV
undef UV_VIS2
define WET_DRY
define NEW_S_COORD
define ANA_GRID
define ANA_INITIAL
define ANA_BTFLUX
define ANA_SMFLUX
define ANA_SRFLUX
define ANA_STFLUX
define NO_FRCFILE

Settings :
Results :

Fig. 23: THACKER results : elevation

1.15. Review of test cases 153

Croco Documentation, Release 2.0.0

1.15.11 Upwelling

define UPWELLING

CPP options:

undef OPENMP
undef MPI
define SOLVE3D
define UV_COR
define UV_ADV
define ANA_GRID
define ANA_INITIAL
define AVERAGES
define SALINITY
define NONLIN_EOS
define ANA_SSFLUX
define ANA_SRFLUX
define ANA_STFLUX
define ANA_BSFLUX
define ANA_BTFLUX
define ANA_SMFLUX
define LMD_MIXING
define LMD_SKPP
define LMD_BKPP
define LMD_RIMIX
define LMD_CONVEC
define EW_PERIODIC
define NO_FRCFILE

Settings :
Results :

Fig. 24: UPWELLING results : temperature

154 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.12 Baroclinic Vortex

Free evolution of a baroclinic vortex (South West drift) that retains part of its initial axisymmetric shape as advective
effects compensate for weak-amplitude Rossby-wave dispersion in its wake. 1-way and 2-way nesting were tested
with this configuration [Debreu et al., 2012, Penven et al., 2006, McWilliams and Flierl, 1979].

define VORTEX

CPP options:

undef OPENMP
undef MPI
undef AGRIF
undef AGRIF_2WAY
undef NBQ
define SOLVE3D
define UV_COR
define UV_ADV
define ANA_STFLUX
define ANA_SMFLUX
define ANA_BSFLUX
define ANA_BTFLUX
define ANA_VMIX
define OBC_EAST
define OBC_WEST
define OBC_NORTH
define OBC_SOUTH
define SPONGE
define ZCLIMATOLOGY
define M2CLIMATOLOGY
define M3CLIMATOLOGY
define TCLIMATOLOGY
define ZNUDGING
define M2NUDGING
define M3NUDGING
define TNUDGING
define NO_FRCFILE

Settings :
Results :

1.15. Review of test cases 155

Croco Documentation, Release 2.0.0

Fig. 25: VORTEX results : difference between parent and child grid (cm)

156 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.13 Internal Tide

Internal Gravity Wave solution over a ridge [Di Lorenzo et al., 2006].

define INTERNAL

CPP options:

undef OPENMP
undef MPI
define SOLVE3D
define UV_COR
define UV_ADV
define BODYTIDE
define ANA_GRID
define ANA_INITIAL
define ANA_BTFLUX
define ANA_SMFLUX
define ANA_SRFLUX
define ANA_STFLUX
define ANA_VMIX
define EW_PERIODIC
define NS_PERIODIC
undef INTERNALSHELF
ifdef INTERNALSHELF
undef EW_PERIODIC
define OBC_EAST
define OBC_WEST
define SPONGE
define ANA_SSH
define ANA_M2CLIMA
define ANA_M3CLIMA
define ANA_TCLIMA
define ZCLIMATOLOGY
define M2CLIMATOLOGY
define M3CLIMATOLOGY
define TCLIMATOLOGY
define M2NUDGING
define M3NUDGING
define TNUDGING
endif
define NO_FRCFILE

Settings :
Results :

1.15. Review of test cases 157

Croco Documentation, Release 2.0.0

Fig. 26: INTERNAL results : generation of an internal wave

158 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.14 Internal Tide (COMODO)

Internal Gravity Wave solution over continental slope and shelf (COMODO test)

Pichon, A., 2007: Tests academiques de maree, Rapport interne n 21 du 19 octobre 2007, Service Hydrographique
et Oceanographique de la Marine.

define IGW

CPP options:

define EXPERIMENT3
undef OPENMP
undef MPI
undef NBQ
define NEW_S_COORD
define TIDES
define TIDERAMP
define SSH_TIDES
define UV_TIDES
define SOLVE3D
define UV_ADV
define UV_COR
define UV_VIS2
undef VADV_ADAPT_IMP
define SPHERICAL
define CURVGRID
define ANA_INITIAL
define ANA_VMIX
define ANA_SMFLUX
define ANA_STFLUX
define ANA_SRFLUX
define ANA_SSFLUX
define ANA_BTFLUX
define ANA_BSFLUX
define NS_PERIODIC
define OBC_EAST
define OBC_WEST
undef SPONGE
define ANA_SSH
define ANA_M2CLIMA
define ANA_M3CLIMA
define ANA_TCLIMA
define ZCLIMATOLOGY
define M2CLIMATOLOGY
define M3CLIMATOLOGY
define TCLIMATOLOGY
define M2NUDGING
define M3NUDGING
define TNUDGING
undef ONLINE_ANALYSIS

Settings :
Results :

1.15. Review of test cases 159

Croco Documentation, Release 2.0.0

Fig. 27: IGW results : internal gravity waves generation

160 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.15 Baroclinic Jet

Effective resolution is limited by the numerical dissipation range, which is a function of the model numerical filters
(assuming that dispersive numerical modes are efficiently removed). Soufflet et al. [2016] present a Baroclinic
jet test case set in a zonally reentrant channel that provides a controllable test of a model capacity at resolving
submesoscale dynamics.

A semi-idealized configuration in a periodic channel is set up to generate two dominant mechanisms of upper ocean
turbulence: (i) surface density stirring by mesoscale eddies and (ii) fine scale instabilities directly energizing the
submesoscale range. The setup consists of a flat reentrant channel of 500 km by 2000 km by 4000 m, centered
around 30 deg of latitude on a 𝛽-plane (the Coriolis frequency is 1.10−4𝑠−1 at the center, 𝛽 = 1.610−11𝑚−1𝑠−1).
Eastern/western boundary conditions are periodic while northern/southern conditions are closed. The initial den-
sity field is constructed with interior and surface meridional density gradients and associated geostrophic currents
that are linearly unstable to both interior baroclinic and Charney instability modes. A linear stability analysis pro-
vides the exponential growth rate of unstable modes as a function of wavenumber. The two most unstable modes
are clearly distinct in length scales on either side of the Rossby deformation radius (around 30 km in the center
+/- 5 km from south to north). The interior geostrophic instability thus injects energy at mesoscale and Charney
instability at submesoscale if resolution allows (2 km). The default resolution is 20 km (40 vertical levels) where
only mesoscale instabilities are at work.

define JET

CPP options:

define ANA_JET
undef MPI
undef NBQ
define SOLVE3D
define UV_COR
define UV_ADV
define UV_VIS2
ifdef ANA_JET
define ANA_GRID
define ANA_INITIAL
endif
define ANA_STFLUX
define ANA_SMFLUX
define ANA_BSFLUX
define ANA_BTFLUX
define ANA_VMIX
define EW_PERIODIC
define CLIMATOLOGY
ifdef CLIMATOLOGY
define ZCLIMATOLOGY
define M2CLIMATOLOGY
define M3CLIMATOLOGY
define TCLIMATOLOGY
define ZNUDGING
define M2NUDGING
define M3NUDGING
define TNUDGING
define ROBUST_DIAG
define ZONAL_NUDGING
ifdef ANA_JET
define ANA_SSH
define ANA_M2CLIMA
define ANA_M3CLIMA
define ANA_TCLIMA

(continues on next page)

1.15. Review of test cases 161

Croco Documentation, Release 2.0.0

(continued from previous page)

endif
endif
define LMD_MIXING
ifdef LMD_MIXING
undef ANA_VMIX
define ANA_SRFLUX
undef LMD_KPP
define LMD_RIMIX
define LMD_CONVEC
endif
define NO_FRCFILE

Settings :
Results :

Fig. 28: JET results : initial state

162 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 29: JET results : results after 180 days

Fig. 30: JET results : vorticity evolutione

1.15. Review of test cases 163

Croco Documentation, Release 2.0.0

1.15.16 Plannar Beach

This test case is a littoral flow driven by obliquely incident waves on a plane beach with a uniform slope of 1:80.
The model is forced by monochromatic waves computed with the WKB wave model [Uchiyama et al., 2010]
propagating offshore waves with 2 m significant wave height, a peak period of 10 s at an angle of 10° off the
shore-normal direction. The horizontal extent of the domain is 1180 m in x (cross- shore), 140 m in y (alongshore)
with grid spacings of dx = dy = 20 m. The model coordinates have a west-coast orientation, with the offshore
open boundary located at x = 0. The resting depth h varies linearly from 12 m offshore, and is discretized with
20 uniform vertical sigma levels. Boundary conditions are alongshore periodicity, weetin-drying conditions at
shore and open boundary conditions at the offshore boundary. Rotation is excluded with f = 0. There is no lateral
momentum diffusion, stratification, nor surface wind/heat/freshwater fluxes. Breaking acceleration is given by the
Church and Thornton [1993] formulation in the WKB model and wave-enhanced vertical mixing is computed by
the first-order turbulent closure model, K-Profile Parameterization (KPP).

define SHOREFACE

CPP options:

undef OPENMP
undef MPI
define SOLVE3D
define UV_ADV
undef MASKING
define WET_DRY
define NEW_S_COORD
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_SSFLUX
define ANA_SRFLUX
define ANA_SST
define ANA_BTFLUX
define NS_PERIODIC
define OBC_WEST
define SPONGE
define MRL_WCI
ifdef MRL_WCI
undef WAVE_OFFLINE
ifndef WAVE_OFFLINE
define WKB_WWAVE
define WKB_OBC_WEST
define WAVE_FRICTION
undef WAVE_ROLLER
undef MRL_CEW
endif
endif
define LMD_MIXING
define LMD_SKPP
define LMD_BKPP
undef BBL
undef SEDIMENT
ifdef SEDIMENT
define TCLIMATOLOGY
define TNUDGING
define ANA_TCLIMA
endif

Settings :

164 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Results :

Fig. 31: SHOREFACE results : Eulerian velocities (left), Stokes velocities (center), Vertical mixing (right)

1.15. Review of test cases 165

Croco Documentation, Release 2.0.0

1.15.17 Rip Current

Rip currents are strong, seaward flows formed by longshore variation of the wave-induced momentum flux. They
are responsible for the recirculation of water accumulated on a beach by a weaker and broader shoreward flow. Here,
we consider longshore variation of the wave-induced momentum flux due to breaking at barred bottom topography
with an imposed longshore perturbation, as in Weir et al. [2011] but in the 3D case. The basin is rectangular
(768 m by 768 m) and the topography is constant over time and based on field surveys at Duck, North Carolina.
Shore-normal, monochoromatic waves (1m, 10s) are imposed at the offshore boundary and propagate through the
WKB wave model coupled with the 3D circulation model [Uchiyama et al., 2010]. The domain is periodic in the
alongshore direction. We assume that the nearshore boundary is reflectionless, and there is no net outflow at the
offshore boundary.

Related CPP options:

RIP Idealized Duck Beach with 3D topography (default)
BISCA Semi-realistic Biscarosse Beach (needs input files)
RIP_TOPO_2D Idealized Duck with longshore uniform topography
GRANDPOPO Idealized longshore uniform terraced beach (Grand Popo, Benin)
ANA_TIDES Adds idealized tidal variations
WAVE_MAKER & NBQ Wave resolving rather than wave-averaged case (#undef MRL_WCI)

CPP options:

define RIP

undef BISCA
undef RIP_TOPO_2D
undef GRANDPOPO
ifdef GRANDPOPO
define RIP_TOPO_2D
endif
undef ANA_TIDES
undef OPENMP
undef MPI
define SOLVE3D
define NEW_S_COORD
define UV_ADV
undef NBQ
ifdef NBQ
define NBQ_PRECISE
define WAVE_MAKER
define WAVE_MAKER_SPECTRUM
define WAVE_MAKER_DSPREAD
define UV_HADV_WENO5
define UV_VADV_WENO5
define W_HADV_WENO5
define W_VADV_WENO5
define GLS_MIXING_3D
undef ANA_TIDES
undef MRL_WCI
define OBC_SPECIFIED_WEST
define FRC_BRY
define ANA_BRY
define Z_FRC_BRY
define M2_FRC_BRY
define M3_FRC_BRY
define T_FRC_BRY

(continues on next page)

166 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

(continued from previous page)

define AVERAGES
define AVERAGES_K
else
define UV_VIS2
define UV_VIS_SMAGO
define LMD_MIXING
define LMD_SKPP
define LMD_BKPP
define MRL_WCI
endif
define WET_DRY
ifdef MRL_WCI
define WKB_WWAVE
define WKB_OBC_WEST
define WAVE_ROLLER
define WAVE_FRICTION
define WAVE_STREAMING
define MRL_CEW
ifdef RIP_TOPO_2D
define WAVE_RAMP
endif
endif
ifndef BISCA
define ANA_GRID
endif
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_SSFLUX
define ANA_SRFLUX
define ANA_SST
define ANA_BTFLUX
if !defined BISCA && !defined ANA_TIDES
define NS_PERIODIC
else
define OBC_NORTH
define OBC_SOUTH
endif
define OBC_WEST
define SPONGE
ifdef ANA_TIDES
define ANA_SSH
define ANA_M2CLIMA
define ANA_M3CLIMA
define ZCLIMATOLOGY
define M2CLIMATOLOGY
define M3CLIMATOLOGY
define M2NUDGING
define M3NUDGING
endif
ifdef BISCA
define BBL
endif
undef SEDIMENT
ifdef SEDIMENT
define SUSPLOAD

(continues on next page)

1.15. Review of test cases 167

Croco Documentation, Release 2.0.0

(continued from previous page)

define BEDLOAD
undef MORPHODYN
endif
undef DIAGNOSTICS_UV

Settings :
Results :

Fig. 32: RIP results : velocity

168 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.18 Sandbar

This test case is part of an effort to develop a comprehensive 3D nearshore model that predicts onshore and off-
shore sandbar migrations under storm and post-storm conditions, without the need to modify the model setting
parameters. In this test, we attempt to reproduce the results of sandbar migration experiments, the European
Large Installation Plan (LIP) experiments, which were carried out at full scale in Delft Hydraulics’s Delta Flume
(Roelvink and Reniers, 1995). Hydrostatic wave-averaged simulations of LIP-1B (erosion) and LIP-1C (accretion)
using CROCO are described in Shafiei et al. (2022), while wave-resolving simulations are in Marchesiello et al.
[2021] for hydrodynamics and Marchesiello et al. [2022] for morphodynamics.

In LIP, three types of experiments were carried out under different types of irregular waves, which subsequently
resulted in a stable (1A), erosive (1B), and accretive (1C) beach state. The initial profile is linear in LIP-1A,
with a slope of 1:30 and consisting of a median grain size of 0.22 mm. The final profile of LIP-1A was used as
the initial profile of LIP-1B and the final profile of LIP-1B as the initial profile of LIP-1C. The wave conditions
were a JONSWAP narrow-banded random wave spectrum with a peak enhancement factor of 3.3 and characteristic
wave height and period: Hs =1.4m,Tp =5s (LIP-1B) and Hs =0.6m,Tp =8s (LIP-1C).Under this wave forcing,
the sandbar developed during LIP-1B, increasing in height and migrating in the offshore direction. Under the
accretive conditions of LIP-1C, the bar migration reversed to the onshore direction. For validation of currents and
sand concentration, we consider the time 8 hours after initialization in experiment 1B and 7 hours in 1C. The LIP-
1B and LIP-1C experiments lasted 18 and 13 hours, respectively. In both cases, the model was run for one hour
with a morphological acceleration factor equal to 18 and 13 respectively.

The model can be run using wave-averaged equations in hydrostatic mode or wave-resolving nonhydrostatic equa-
tions.

1.15.18.1 Wave-averaged solution (default)

Here, wave-averaged equations are used that require parametrization of wave effects on morphodynamics. Bed-
load nonlinear wave-related transport is parametrized with the SANTOSS formulation, which follows the wave
half-cycle concept to account for wave asymmetry and skewness. LIP1b and LIP1c experiments are conducted
sequentially, meaning that the final bathymetry of LIP1b is the initial bathymetry of LIP1c. The numerical domain
is 200 meters long and 4.1 m deep. The numerical domain is discretized using a uniform grid with horizontal
resolution of 1.5 m and the number of vertical layers is 20 throughout the domain (the heights of the cells in the
deep region and around the bar are about 21 cm and 5 cm respectively).

For wave forcing, CROCO is fully coupled to built-in ray-theory spectrum-peak wave propagation model. The
offshore wave height is forced at the model boundary with values of the experiments. The resulting Dean number
Ω = 𝐻𝑠/𝑇𝑝𝑊𝑠 clearly differentiates the erosive and accretive conditions. Apart from the forcing conditions, all
other wave model parameters are the same for both cases.

For the sediment transport model, the main calibration parameters to be tuned in the suspended load model are:
the settling velocity 𝑊𝑠 = 25 mm/s; the critical bed shear stress 𝜏𝐶𝐸 = 0.18 N/m2; and erosion rate 𝐸0 =
0.001 kg/m2/s. For bed roughness, the bottom boundary layer model (BBL) uses empirical formulations for sand
mobilization based on grain size and wave statistics. For bedload transport, SANTOSS is implemented with only
one calibration parameter: the bedload factor, which is set to 0.5.

1.15.18.2 Wave-resolved solution (#define NBQ)

In this case, we do not rely on parametrization for the bottom boundary layer or bedload transport, as as skewed-
asymmetric waves are resolved explicitly, but we make sure that the wave-boundary layer is resolved, and that the
first vertical level is in a sheet flow layer (about 10 times the grain size). This is particularly important for the
onshore bar migration phase. Note that in our formulation, the turbulence intensity (calculated with the closure
model) affects the sediment resuspension. A numerical wave maker forces the JONSWAP spectrum of linear waves
at the offshore boundary (as in the laboratory experiments).

Roelvink, J.A., Reniers, 1995. LIP 11D delta flume experiments : a dataset for profile model validation. WL /
Delft Hydraulics.

1.15. Review of test cases 169

Croco Documentation, Release 2.0.0

Shafiei H., J. Chauchat, C. Bonamy, and P. Marchesiello, 2022: Numerical simulation of on-shore/off-shore sandbar
migration using wave-cycle concept – application to a 3D wave-averaged oceanic model (CROCO), in preparation
for Ocean Modelling.

define SANDBAR

CPP options:

define SANDBAR_OFFSHORE /* LIP-1B */
undef SANDBAR_ONSHORE /* LIP-1C */
undef OPENMP
undef MPI
undef NBQ
define SOLVE3D
define UV_ADV
define NEW_S_COORD
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_SSFLUX
define ANA_SRFLUX
define ANA_SST
define ANA_BTFLUX
define OBC_WEST
define SPONGE
define WET_DRY
ifndef NBQ /* ! NBQ */
define MRL_WCI
ifdef MRL_WCI
define WKB_WWAVE
define MRL_CEW
define WKB_OBC_WEST
define WAVE_ROLLER
define WAVE_FRICTION
define WAVE_BREAK_TG86
define WAVE_BREAK_SWASH
define WAVE_STREAMING
undef WAVE_RAMP
endif
define GLS_MIXING
define GLS_KOMEGA
undef LMD_MIXING
ifdef LMD_MIXING
define LMD_SKPP
define LMD_BKPP
define LMD_VMIX_SWASH
endif
define BBL
else /* NBQ */
define MPI
define NBQ_PRECISE
define WAVE_MAKER
define UV_ADV
define UV_HADV_WENO5
define UV_VADV_WENO5
define W_HADV_WENO5
define W_VADV_WENO5

(continues on next page)

170 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

(continued from previous page)

define GLS_MIXING_3D
define GLS_KOMEGA
define ANA_BRY
define Z_FRC_BRY
define M2_FRC_BRY
define M3_FRC_BRY
define T_FRC_BRY
define AVERAGES
define AVERAGES_K
define DIAGNOSTICS_EDDY
endif /* NBQ */
define SEDIMENT
ifdef SEDIMENT
define SUSPLOAD
define BEDLOAD
define MORPHODYN
define TCLIMATOLOGY
define TNUDGING
define ANA_TCLIMA
endif
undef STATIONS
ifdef STATIONS
define ALL_SIGMA
endif
undef DIAGNOSTICS_TS
ifdef DIAGNOSTICS_TS
define DIAGNOSTICS_TS_ADV
endif
define NO_FRCFILE
undef RVTK_DEBUG

Results :

1.15. Review of test cases 171

Croco Documentation, Release 2.0.0

Fig. 33: SANDBAR results : validation of offshore sandbar migration against LIP-1B flume experiment

172 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.19 Swash

This test case addresses wave dynamics on a gently sloping laboratory beach (Globex experiment), using a wave-
resolving configuration. The simulation is compared in Marchesiello et al. [2021] against GLOBEX experiments
B2 and A3 performed in 2012 in the Scheldt flume of Deltares (Delft, the Netherlands), and described in Michallet
et al. [2014]. The flume is 110 m long and contains a solid beach of 1:80 slope with its toe at 16.6 m from the
wave maker. Experiments are run with a still water depth of 0.85 m and shoreline at x = 84.6 m. Second-order
bichromatic waves (B2) are generated at the offshore boundary, with shore normal direction. The grid spacing is
dx=1 cm with 10 vertical levels evenly spaced between the free surface and bottom. A simulation with 20 levels
gives similar results, while the solution is moderately degraded (mostly in higher moments) with coarser horizontal
resolution (dx=3, 6 and 12 cm), which shows good convergence properties. The model time step is dt = 0.15 ms.
The minimum depth is 1 mm on the shore, the position of which varies with the swash oscillation, relying on the
wetting-drying scheme in CROCO. For bottom drag, the logarithmic law of the wall is used with roughness length
𝑧0 = 0.0625 mm.

define SWASH

CPP options:

define SWASH_GLOBEX_B2
undef SWASH_GLOBEX_A3
undef OPENMP
undef MPI
define SOLVE3D
define AVERAGES
define NBQ
define NBQ_PRECISE
define WAVE_MAKER
define UV_ADV
define UV_HADV_WENO5
define UV_VADV_WENO5
define W_HADV_WENO5
define W_VADV_WENO5
define GLS_MIXING_3D
define NEW_S_COORD
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_SSFLUX
define ANA_SRFLUX
define ANA_SST
define ANA_BTFLUX
define OBC_WEST
define OBC_SPECIFIED_WEST
define FRC_BRY
define ANA_BRY
define Z_FRC_BRY
define M2_FRC_BRY
define M3_FRC_BRY
define T_FRC_BRY
define WET_DRY
define NO_FRCFILE

Settings :
Results :

1.15. Review of test cases 173

Croco Documentation, Release 2.0.0

Fig. 34: SWASH results : Velocity and elevation

174 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.20 Tank

The non-hydrostatic solver is tested with several analytical solutions and laboratory experiments. The TANK test
case simulates a two-dimensional, deepwater standing wave in a rectangular basin with a depth D and length 𝑙 of 10
m. The oscillation is caused by a sinusoidal free-surface set-up at time=0. The model uses a uniform grid spacing
of 0.2 m in the horizontal and vertical directions. From the dispersion relation (𝜎 = 2𝜋/𝑇 = 𝑔𝑘 tanh 𝑘𝐷, with
𝐿 = 𝑘/2𝜋 = 2𝑙 the wave length), the wave period is T = 3.6 s and phase speed is c = 5.6 m/s. With the hydrostatic
assumption, the phase speed and frequency are higher (T = 2.0 s and c = 9.9 m/s). The simulations are compared
to analytical solutions.

Chen [2003]

define TANK

CPP options:

undef MPI
define NBQ
ifdef NBQ
define NBQ_PRECISE
endif
define SOLVE3D
undef UV_ADV
define NEW_S_COORD
define ANA_GRID
define ANA_INITIAL
define ANA_BTFLUX
define ANA_SMFLUX
define ANA_SRFLUX
define ANA_STFLUX
define NO_FRCFILE

Settings :
Results :

1.15. Review of test cases 175

Croco Documentation, Release 2.0.0

Fig. 35: TANK results : Comparison between analytical, hydrostatique and non-hydrostatique solutions

176 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.21 Acoustic wave

define ACOUSTIC

CPP options:

undef MPI
define NBQ
ifdef NBQ
undef NBQ_PRECISE
define NBQ_PERF
endif
undef UV_VIS2
define SOLVE3D
define NEW_S_COORD
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_SRFLUX
define ANA_BTFLUX
define NO_FRCFILE

1.15. Review of test cases 177

Croco Documentation, Release 2.0.0

1.15.22 Gravitational Adjustment

The goal of this test case, also known as Lock-Exchange experiment, is to evaluate different numerical advection
schemes on representing the adiabatic process in a dam breaking experiment. At the initial time, a vertical density
front separates two density classes. Adjustment occurs in which lighter water moves above heavier water [Shin
et al., 2004]. The model experiments are designed to reproduce the lock-exchange problem described in Ilıcak et
al. [2012]. Analytical solutions to this problem exist and from Bernouilli’s equation for an ideal fluid, the front
propagates with speed 0.5

√︀
𝑔𝐻𝛿𝜌/𝜌0. This speed may be slowed down by mixing between the two layers due to

numerical diapycnal diffusion.

The setup is a closed, two-dimensional (x,z) domain with a constant depth of H = 20 m and a length of L = 64 km.
At t = 0 the two initial densities that represent the two water masses are separated by a vertical barrier. The right
and left halves of the domain have densities of 1020 and 1025 kg/m3 respectively. To investigate the impact of the
model resolution and the choice of advection scheme on spurious mixing, the model uses three different horizontal
and vertical model grid spacings: coarse (dx=2 km; N=10); medium is default (dx=500 m, N=40); fine (dx=125
m, N=160).

A non-hydrostatique version can be run (#define NBQ) in a smaller domain of 3 m by 30 cm and resolution of 1
cm. In this case, Kelvin-Helmholtz instabilities develop along the front during the gravitational adjustment.

define GRAV_ADJ

CPP options:

undef OPENMP
undef MPI
undef NBQ
undef XIOS
define SOLVE3D
define NEW_S_COORD
define UV_ADV
define TS_HADV_WENO5
define TS_VADV_WENO5
define UV_HADV_WENO5
define UV_VADV_WENO5
ifdef NBQ
define W_HADV_WENO5
define W_VADV_WENO5
endif
undef UV_VIS2
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_BTFLUX
undef PASSIVE_TRACER
define NO_FRCFILE
undef RVTK_DEBUG

Settings :
Results :

178 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 36: GRAV_ADJ results : density front evolution for a medium resolution of 500m.

1.15. Review of test cases 179

Croco Documentation, Release 2.0.0

1.15.23 Internal Soliton

The non-hydrostatic solver is tested with several analytical solutions and laboratory experiments. The Internal
Soliton test case is setup from the experiment of Horn et al. [2001]. It illustrates the processes acting on an
interfacial basin-scale standing wave known as an internal seiche, neglecting the Earth’s rotation. The propagation
regimes depends on the ratio of the amplitude of the initial wave to the depth of the thermocline, and the ratio of
the depth of the thermocline to the overall depth of the basin. In the present setup with moderate wave amplitude,
the degeneration mechanism of the basin-scale internal wave is the generation of solitons by nonlinear steepening.
As the wave steepens its horizontal lengthscale decreases until the dispersive terms can no longer be neglected.
Eventually, a balance between nonlinear steepening and dispersion leads to the evolution of solitary waves, a process
described by the Korteweg–de Vries (KdV) equation for the interfacial displacement 𝜂𝑖:

𝜕𝜂𝑖
𝜕𝑡

+ 𝑐0
𝜕𝜂𝑖
𝜕𝑥

+ 𝛼𝜂𝑖
𝜕𝜂𝑖
𝜕𝑥

+ 𝛽
𝜕3𝜂𝑖
𝜕𝑥3

The evolution of solitons is sensitive to the numerical damping associated with the choice of resolution, advection
schemes and diffusion operators (implicit in the advection scheme or explicit).

The simulations can be compared with the laboratory experiments of Horn et al. [2001], which were carried out
in a tank 6 m long and 29 cm deep. The two-layer fluid is given by a hyperbolic tangent density profile, which is
rotated around the center of the basin to initiate the internal seiche at the basin scale. The resolution of the model
is 10 cm horizontally and 4 mm vertically.

define ISOLITON

CPP options:

undef MPI
define NBQ
undef XIOS
define SOLVE3D
define NEW_S_COORD
define UV_ADV
define TS_HADV_WENO5
define TS_VADV_WENO5
define UV_HADV_WENO5
define UV_VADV_WENO5
define W_HADV_WENO5
define W_VADV_WENO5
undef UV_VIS2
undef TS_DIF2
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_BTFLUX
undef PASSIVE_TRACER
define NO_FRCFILE
undef RVTK_DEBUG

Settings :
Results :

180 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 37: ISOLITON results : generation of a train of internal solitons from a basin-scale internal seiche

1.15. Review of test cases 181

Croco Documentation, Release 2.0.0

1.15.24 Kelvin-Helmoltz Instability

This test case runs a Kelvin-Helmholtz instability between two fluid layers. It is part of experiments conducted
with CROCO by Penney et al. [2020]. The numerical simulations are performed using the non-hydrostatic, non-
Boussinesq version of CROCO. While numerical simulations of KH instabilities are often considered in a periodic
domain with rigid lid conditionsfor the upper boundary, the implementation presented here uses a free-surface
upper boundary, with periodic lateral boundary conditions in the x- and y-directions. The setup is two-dimensional
(default) or three-dimensional, with initial density distribution defined as two constant-density layers separated by
a strongly stratified pycnocline, with a weak stable background stratification superimposed. The configuration
parameters are chosen so that the necessary criterion for stratified shear instability, Ri < 1/4, is satisfied. U(z), the
initial background flow providing the shear, is defined by a hyperbolic tangent profile, with the upper layer moving
leftward, and the lower layer rightward. Small amplitude perturbations are required to kickstart the instability.

The existence of a free surface and compressibility adds two dynamical processes (surface and acoustic waves)
compared to more traditional studies in incompressible, unbounded or rigid lid flows. With the chosen configu-
rations where the instability develops far from the vertical boundaries, the impact of these additional processes is
negligible, but in certain circumstances, surface and acoustic waves may play a role in modifying the turbulent
cascade.

The results are sensitive to the resolution (1 m by default) and the choice of advection schemes and diffusion
operator (implicit in the advection schemes or explicit).

define KH_INST

CPP options:

undef KH_INSTY
undef KH_INST3D
define MPI
define NBQ
define NBQ_PRECISE
undef XIOS
define SOLVE3D
define NEW_S_COORD
define UV_ADV
define TS_HADV_WENO5
define TS_VADV_WENO5
define UV_HADV_WENO5
define UV_VADV_WENO5
define W_HADV_WENO5
define W_VADV_WENO5
undef SALINITY
undef PASSIVE_TRACER
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
undef ANA_SRFLUX
define ANA_BTFLUX
define ANA_SSFLUX
define ANA_BSFLUX
ifndef KH_INSTY
define EW_PERIODIC
else
define NS_PERIODIC
endif
define NO_FRCFILE

Settings :

182 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Results :

Fig. 38: KH_INST results : instability generation

1.15. Review of test cases 183

Croco Documentation, Release 2.0.0

1.15.25 Horizontal tracer advection

Test CROCO horizontal advection schemes for tracers

SOLID_BODY_ROT Example with spatially varying velocity DIAGONAL_ADV Constant advection in the diag-
onal SOLID_BODY_PER Example with a space and time-varying velocity

define TS_HADV_TEST

CPP options:

undef SOLID_BODY_ROT
undef DIAGONAL_ADV
define SOLID_BODY_PER

undef OPENMP
undef MPI
undef UV_ADV
define NEW_S_COORD
undef UV_COR
define SOLVE3D
define M2FILTER_NONE
define ANA_VMIX
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_SRFLUX
define ANA_STFLUX
define ANA_BTFLUX
define ANA_BSFLUX
define ANA_SSFLUX
define NO_FRCFILE
define SALINITY
define EW_PERIODIC
define NS_PERIODIC

define TS_HADV_UP3
undef TS_HADV_C4
undef TS_HADV_UP5
undef TS_HADV_WENO5
undef TS_HADV_C6

184 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.26 Sediment test cases

All the test cases can be defined either with MUSTANG or the USGS sediment model.

1.15.26.1 DUNE cases

Migration of a dune composed by different sand classes. Bedload process only

define DUNE

CPP options:

undef OPENMP
undef MPI
define M2FILTER_NONE
define UV_ADV
define NEW_S_COORD
undef UV_COR
define SOLVE3D
define ANA_GRID
define ANA_INITIAL
define ANA_SSFLUX
define ANA_SRFLUX
define ANA_STFLUX
define ANA_BSFLUX
define ANA_BTFLUX
define ANA_SMFLUX
define OBC_WEST
define OBC_EAST
define ANA_SSH
define ZCLIMATOLOGY
define ANA_M2CLIMA
define M2CLIMATOLOGY
define GLS_MIXING
define MORPHODYN

=> For Mustang model, just add:

define MUSTANG
ifdef MUSTANG
define key_MUSTANG_V2
define key_MUSTANG_bedload
define key_tenfon_upwind
endif

=> For USGS sediment model, just add:

define SEDIMENT
ifdef SEDIMENT
undef SUSPLOAD
define BEDLOAD
undef BEDLOAD_WENO5
define BEDLOAD_WULIN
define TAU_CRIT_WULIN
endif

1.15. Review of test cases 185

Croco Documentation, Release 2.0.0

1.15.26.1.1 DUNE case (default)

Dune 2m. Sediment composed of two sand fractions. stratigraphy diagnostics

CPP options to add:

undef ANA_DUNE /* Analytical test case (Marieu) */
undef DUNE3D /* 3D example */

Results :

Fig. 39: Fine sand fraction after 10 days in the seabed. The read line indicates the initial position of the dune.

1.15.26.1.2 DUNE3D case

Extension of the DUNE case in 3D. Migration of a Sand bump forced by a barotropic constant flow

CPP options to add:

undef ANA_DUNE /* Analytical test case (Marieu) */
define DUNE3D /* 3D example */

Results :

1.15.26.1.3 ANA_DUNE case

Adaptation of the DUNE case. Migration of a sand dune with an analytical bedload formulation that provides an
analytical solution for the dune evolution [Long et al., 2008].

CPP options to add:

define ANA_DUNE /* Analytical test case (Marieu) */
undef DUNE3D /* 3D example */

=> For Mustang model, just add:

186 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 40: Sand bump at initialization

1.15. Review of test cases 187

Croco Documentation, Release 2.0.0

Fig. 41: Sand bump after 20 days

188 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

define MUSTANG
ifdef MUSTANG
define key_MUSTANG_V2
define key_MUSTANG_bedload
define key_tenfon_upwind
endif

=> For USGS sediment model, just add:

define SEDIMENT
ifdef SEDIMENT
undef SUSPLOAD
define BEDLOAD
undef BEDLOAD_WENO5
define BEDLOAD_MARIEU
endif

Results :

Fig. 42: Comparison between dune propagation (every 30 mins) simulated with CROCO/MUSTANG and com-
puted using the analytical solution

1.15. Review of test cases 189

Croco Documentation, Release 2.0.0

1.15.26.2 SED_TOY cases

Single column test case

define SED_TOY

CPP options:

undef OPENMP
undef MPI
define NEW_S_COORD
define SOLVE3D
undef NONLIN_EOS
define SALINITY
undef UV_VIS2
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_SRFLUX
define ANA_STFLUX
define ANA_SSFLUX
define ANA_BTFLUX
define ANA_BSFLUX
define EW_PERIODIC
define NS_PERIODIC

1.15.26.2.1 SED_TOY/ROUSE case

Testing sediment suspension in a 1DV framework to verify the agreement with Rouse theory

CPP options to add:

define SED_TOY_ROUSE

define ANA_VMIX
define BODYFORCE

=> For Mustang model, just add:

define MUSTANG

=> For USGS sediment model, just add:

define SEDIMENT
define SUSPLOAD
define SED_TAU_CD_CONST

Results :

190 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 43: Comparison between suspended concentration and analytical Rouse profiles for 6 different settling veloc-
ities

1.15.26.2.2 SED_TOY/CONSOLID case

This 1DV test case exemplifies the sequence of depth-limited erosion, deposition, and compaction that char-
acterizes the response of mixed and cohesive sediment in the model. From COAWST experiments, Cohe-
sive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled
Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234) [Sherwood et al., 2018]

2 sand classes and 2 mud classes, cohesive behaviour, up to 38 days :

CPP options to add:

define SED_TOY_CONSOLID

define SEDIMENT
define SUSPLOAD
undef BBL
define GLS_MIXING
define GLS_KOMEGA
define MIXED_BED
undef COHESIVE_BED

Results :

1.15.26.2.3 SED_TOY/RESUSP case

This 1DV test case to demonstrate the evolution of stratigraphy caused by resuspension and subsequent settling
of different class of sediment during time-dependent bottom shear stress events. From COAWST experiments,
Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled
Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234) [Sherwood et al., 2018]

2 sand classes and 2 mud classes, non cohesive behaviour:

CPP options to add:

1.15. Review of test cases 191

Croco Documentation, Release 2.0.0

Fig. 44: Evolution of equilibrium bulk critical stress profile for erosion (red solid line) and the instantaneous profile
of bulk critical stress for erosion (blue solid line)

192 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

define SED_TOY_RESUSP

define SEDIMENT
define SUSPLOAD
undef BBL
define GLS_MIXING
define GLS_KOMEGA
define MIXED_BED
undef COHESIVE_BED

Results :

Fig. 45: Double surface stress event and response on stratigraphy 5 days later

1.15. Review of test cases 193

Croco Documentation, Release 2.0.0

1.15.26.3 TIDAL_FLAT case

2DV tidal flat with a sediment mixture (mud, fine sand, medium sand) - suspension only

define TIDAL_FLAT

CPP options:

undef OPENMP
undef MPI
undef NONLIN_EOS
define NEW_S_COORD
define SALINITY
define UV_ADV
define TS_HADV_WENO5
define TS_VADV_WENO5
define UV_HADV_WENO5
define UV_VADV_WENO5
define UV_COR
define SOLVE3D
define UV_VIS2
define GLS_MIXING
define ANA_INITIAL
define WET_DRY
define TS_DIF2
define SPONGE
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_SRFLUX
define ANA_STFLUX
define ANA_SSFLUX
define ANA_BTFLUX
define ANA_BSFLUX
define OBC_WEST
define FRC_BRY

define MUSTANG
ifdef MUSTANG
define key_sand2D
undef key_MUSTANG_V2
endif

194 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 46: Bottom mud concentration evolution over several tidal cycles

1.15. Review of test cases 195

Croco Documentation, Release 2.0.0

1.15.26.4 FLOCMOD cases

1.15.26.4.1 FLOCMOD 0D – comparison with laboratory experiments [#SED_TOY_FLOC_0D]

This test case simulates a laboratory experiment dedicated to flocculation experiments under controlled conditions
(see Verney et al. [2011]). Natural SPM were mixed in a jar and agitation was tuned to simulate turbulence
variations during a tidal cycle. G values ranged from 1 s-1 (around slack periods) to 12 s-1 (during flood/ebb
periods). Floc size were monitored using a CCD camera, and PSD were extracted from image processing routines.

This test case can be activated with the cppkey #SED_TOY_FLOC_0D. This test case has a 1DV structure but
current is set to 0 (no advection, no diffusion), and settling is not allowed (Ws = 0 m.s-1 for all classes). Shear rate
is imposed using experimental values in each vertical grid cell.

The initial concentration is set to 0.093 g.l-1 (experimental value) and the initial distribution is spread over the floc
size classes lower than 50 𝜇𝑚.

15 floc classes are used, logarithmically distributed from 4 𝜇𝑚 to 1500 𝜇𝑚. Primary particle size is set to 4 𝜇𝑚
and nf = 1.9. CROCO time step is set to 2 s.

1.15.26.4.1.1 Shear aggregation and binary shear fragmentation only

FLOCMOD main parameters are : alpha = 0.43 and beta = 0.1.

Initial floc size distribution is far from the equilibrium, and FLOCMOD fails to reproduce the first flocculation
period. After the first flood period, FLOCMOD and experimental results are in good agreement considering the
D50. The settling phase observed in the experiment from 06:00 to 07:00 is not simulated in the 0D model.

196 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.26.4.1.2 Shear aggregation, binary shear fragmentation and floc erosion

FLOCMOD main parameters are : alpha = 0.35 , beta = 0.1 , f_ero_frac = 0.4 and f_ero_iv = 3.

FLOCMOD reference is the shear aggregation/fragmentation test detailed above.

The median floc size dynamics is globally similar to the reference, however flocculation is more intense as part
of shear fragmentation is attributed to floc erosion, hence flocs are less fragmented globally. We can also notice
that erosion mode maintains a bimodal distribution, with a microfloc population (due to erosion) and macrofloc
population varying in time with turbulence.

1.15. Review of test cases 197

Croco Documentation, Release 2.0.0

198 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.26.4.2 FLOCMOD 1DV [#SED_TOY_FLOC_1D]

This test case illustrates the vertical flocculation dynamics along a tidal cycle. 15 floc classes are used, logarith-
mically distributed from 4 𝜇𝑚 to 1500 𝜇𝑚. Primary particle size is set to 4 𝜇𝑚 and nf = 1.9. CROCO time step
is set to 10s.

CROCO main parameters are : h = 5 m, 50 vertical layers. A sinusoidal forcing is applied.

MUSTANG parameters : E0 = 0.0005 kg.m-3 and toce = 0.3N.m-2.

FLOCMOD main parameters are : alpha = 0.4 and beta = 0.2, including shear erosion and binary fragmentation:
f_ero_frac = 0.5 and f_ero_iv = 4.

The shear rate varied from O(0.1 s-1) during slack to O(50 s-1) during max flood/ebb currents close to the bed. In
the upper part of the water column, the shear rate is lower, and reaches up to O(1 s-1) during maximum current
velocities.

This tidal forcing induces resuspension during high shear stress periods, and SSC reaches up to 0.5 g/L close to
the bed. Floc size distribution strongly varies along the tide, with the smallest floc sizes (50𝜇𝑚) close to the bed
during maximum flood/ebb periods and the largest (500𝜇𝑚) during slack periods. We can note that flocculation
starts earlier in the upper part of the water column, due to i) lower shear rate and ii) larger SSC values. Next flocs
settle and accumulate close to the bed before settling in the sediment compartment.

1.15. Review of test cases 199

Croco Documentation, Release 2.0.0

200 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.26.4.2.1 Adding differential settling aggregation

For this test, the same setup as above is used, and aggregation by differential settling is also activated
(L_ADS=.TRUE.). Adding a complementary aggregation term (and a constant fragmentation term) induces a
more intense flocculation, especially in the upper half of the water column, where the shear stress is less intense
(D50 greater than 1mm). Close to the bed, the floc dynamics is similar to the reference, except during slack period
where settling is dominant. As a consequence, large floc sizes imply lower SSC especially in the upper part of the
water column.

1.15. Review of test cases 201

Croco Documentation, Release 2.0.0

1.15.26.4.2.2 Adding “low negative mass option” mneg_param = 0.001 g/L.*

This test case is similar to the first 1DV test case (ADS not activated), except that low negative mass is “allowed” to
limit the number of sub time steps. This means that when the total negative mass is below mneg_param, negative
classes have their masses set to 0 and the remaining positive classes are proportionally lowered to ensure mass
conservation.

Results are very similar both in term of SSC and floc D50, hence validating the possibility to use this option to
improve computation time. For this 1DV configuration, activating this option decreased the computation time of
about 30%.

202 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.26.4.2.3 Passing from 15 classes to 8 classes

This last test concerns the number of classes to be used. The 15 original sediment classes are : [4; 6; 9; 14; 21;
33; 50; 77; 118; 180; 275; 421; 643; 982; 1500] in 𝜇𝑚. We run exactly the same configuration but with 8 classes
: [50; 77; 118; 180; 275; 421; 643; 982] in 𝜇𝑚.

In this case, flocculation is less intense, which can be explained by a less important numerical diffusion induced
by small size classes (aggregating with the largest).

1.15. Review of test cases 203

Croco Documentation, Release 2.0.0

Very similar results compared with our reference (15 classes) can be obtained when tuning alpha (= 0.8) and
f_ero_frac (= 0.3).

Switching from 15 to 8 classes is crucial in term of computation time, saving up to 85% of computation time.

204 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.27 Kilpatrick

The purpose of this ktest is to simulate the response of the Atmospheric Boundary Layer 1d (ABL1d) model to a
2-dimensional (x-z) SST front. This ktest is based on Kilpatrick et al. [2014] case study (see also Spall [2007],
Ayet and Redelsperger [2019], Lemarié et al. [2021]).

Description of the ABL1d model can be found in Lemarié et al. [2021]. Same version of the ABL1d model
described in this paper has been implemented in CROCO.

define KILPATRICK

CPP options (cppdefs.h) :

#elif defined KILPATRICK
/*
! KILPATRICK Example
! ========== =======
*/
define MPI
define AVERAGES
define NONLIN_EOS
define SOLVE3D
define ANA_GRID
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_BTFLUX
define NO_FRCFILE
define ABL1D
ifdef ABL1D
define BULK_FLUX
undef BULK_ECUMEV0
undef BULK_ECUMEV6
define BULK_GUSTINESS
define ANA_ABL_LSDATA
define ANA_ABL_VGRID
define STRESS_AT_RHO_POINTS
undef ABL_NUDGING
undef ABL_NUDGING_DYN
undef ABL_NUDGING_TRA
undef ABL_DYN_RESTORE_EQ
undef SFLUX_CFB
else
undef BULK_FLUX
endif

Settings :
Results :

1.15. Review of test cases 205

Croco Documentation, Release 2.0.0

Fig. 47: Cold-to-warm case of Kilpatrick - sensitivity to bulk parametrizations

206 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

1.15.28 Seagrass

This case aims at reproducing flume experiments of Ganthy et al. [2015].

These experiments were conducted in a recirculating straight flume for five contrasted seagrass development stages
(T1 to T5) and a case without vegetation (Ts) and four flow regimes (V1 to V4), leading to twenty four velocity
profiles measured 0.45 m downward the leading edge of vegetation patch.

Fig. 48: Description of the experiment modelled with SEAGRASS test case

To run this test case, first modify CPP options (cppdefs.h) :

define SEAGRASS
undef REGIONAL

#elif defined SEAGRASS
/*
! Seagrass example
! ================
*/
define OBSTRUCTION

undef OPENMP
undef MPI
define SOLVE3D
define UV_ADV
define UV_COR
define NONLIN_EOS
define SALINITY
define ANA_GRID
define MASKING
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_SSFLUX
define ANA_SRFLUX

(continues on next page)

1.15. Review of test cases 207

Croco Documentation, Release 2.0.0

(continued from previous page)

define ANA_BTFLUX
define ANA_BSFLUX
define GLS_MIXING
define PSOURCE
undef PSOURCE_MASS
define ANA_PSOURCE
define NS_PERIODIC
undef FLOATS
define NO_FRCFILE
define USE_CALENDAR
define NEW_S_COORD
define OBC_EAST
define FRC_BRY
ifdef FRC_BRY
define ANA_BRY
define Z_FRC_BRY
define OBC_M2CHARACT
define OBC_REDUCED_PHYSICS
define M2_FRC_BRY
undef M3_FRC_BRY
define T_FRC_BRY
endif
undef RVTK_DEBUG

#endif

Settings :
The test case correspond to a 2DV case. The water depth is around 0.20 m discretized with 40 sigmas layers. The
spatial resolution is 0.05 m and the domain is 1.8 m long.

For each test (T1 to T5 and Ts) and flow regime (V1 to V4 corresponding to speed from 0.1 to 0.4 m/s), the model
was run during 3 minutes. An equilibrium state was reach on average after 1 minute. Results are outputted at 1 Hz
over the last 30 seconds of the run and then time-averaged.

All parameters for T4V4 configuration are available in TEST_CASES directory in files :

• croco.in.Seagrass : CROCO parameters, current speed is forced by river input

• obstruction_seagrass_para.txt : OBSTRUCTION module parameters, see OBSTRUCTION main parameter
file for more details about parameters

• obstruction_seagrass_var.txt : seagrass parameters, see variable specific file for more details about parame-
ters

• obstruction_seagrass_position.nc : seagrass position, see position file format for more details

• obstruction_seagrass_distri.txt : seagrass vertical distribution, see vertical distribution file format for more
details

Please refer to Ganthy et al. [2015], Ganthy et al. [2024] and Ganthy [2011] for details for the others configurations.

Results :

208 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Fig. 49: Normalized velocity profiles obtained at 0.45 m downward the leading edge of vegetation patch for 4 speed
values (V1 to V4) for T4 seagrass characteristics (modelled in blue, mesured in grey) and modelled canopy (green).

1.15. Review of test cases 209

Croco Documentation, Release 2.0.0

1.16 Appendices

1.16.1 cppdefs.h

This file defines the CPP keys that are used by the the C-preprocessor when compiling CROCO. The C-preprocessor
selects the different parts of the Fortran code which needs to be compiled depending on the defined CPP options.
These options are separated in two parts: the basic option keys in cppdefs.h and the advanced options keys in
cppdefs_dev.h.

CPP keys define the case: test case, realistic case, as well as the numerical schemes, parameterizations, and modules
used, and the forcing and boundary conditions.

• Configuration

CPP options Description
BASIN Must be defined for running the Basin example
CANYON_A Must be defined for running the Canyon_A example
CANYON_B Must be defined for running the Canyon_B example
EQUATOR Must be defined for running the Equator example
GRAV_ADJ Must be defined for running the Gravitational Adjustment example
ACOUSTIC Must be defined for running the accoustic example
INNERSHELF Must be defined for running the Inner Shelf example
OVERFLOW Must be defined for running the Gravitational/Overflow example
SEAMOUNT Must be defined for running the Seamount example
SHELFRONT Must be defined for running the Shelf Front example
SOLITON Must be defined for running the Equatorial Rossby Wave example
UPWELLING Must be defined for running the Upwelling example
INTERNAL Must be defined for running the Internal tides example
VORTEX Must be defined for running the Baroclinic Vortex example
JET Must be defined for running the Jet example
THACKER Must be defined for running the Thacker example
TANK Must be defined for running the Tank example
S2DV Must be defined for running the S2DV example
RIP Must be defined for running the Rip current example
SHOREFACE Must be defined for running the Shoreface example
SWASH Must be defined for running the Swash example
REGIONAL Must be defined if running realistic regional simulations

• Prallelisation

CPP options Description
OPENMP Activate Open-MP parallelization protocol
MPI Activate MPI parallelization protocol
PARALLEL_FILES Activate parallel I/O writing
XIOS Use external server for output
AUTOTILING Activate subdomains partitionning optimization

• Nesting

CPP options Description
AGRIF Activate nesting capabilities (1-WAY by default)
AGRIF_2WAY Activate 2-WAY nesting (update parent solution by child solution)

• Open Boundary Conditions

210 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

CPP options Description
OBC_EAST Open eastern boundary
OBC_WEST Open western boundary
OBC_SOUTH Open southern boundary
OBC_NORTH Open northern boundary

• Tides

CPP options Description
TIDES Activate tidal forcing at open boundaries
SSH_TIDES process and use tidal sea level data
UV_TIDES process and use tidal current data
TIDERAMP

Apply ramping on tidal forcing (1 day) at
initialization
Warning! This should be undefined if restarting the
model

• Applications

CPP options Description
BIOLOGY Activate biogeochemical modeling
FLOATS Activate floats
STATIONS Store high frequency model outputs at stations
PASSIVE_TRACER Add a passive tracer
BBL Activate bottom boundary layer parametrization
SEDIMENT Activate sediment modeling (USGS model)
MUSTANG Activate sediment modeling (MUSTANG model)

• Grid Configuration

CPP options Description
CURVGRID Activate curvilinear coordinate transformation
SPHERICAL Activate longitude/latitude grid positioning
MASKING Activate land masking
WET_DRY Activate wetting-Drying scheme
NEW_S_COORD Choose new vertical S-coordinates

• Model Dynamics

CPP options Description
SOLVE3D Solve 3D primitive equations
UV_COR Activate Coriolis terms
UV_ADV Activate advection terms
NBQ Activate non-boussinesq option

• Lateral Momentum Advection

1.16. Appendices 211

Croco Documentation, Release 2.0.0

CPP options Description
DV_UP3 Activate 3rd-order upstream biased advection scheme
UV_HADV_UP5 Activate 5th-order upstream biased advection scheme
UV_HADV_C2

Activate 2nd-order centred advection scheme
(should be used with explicit momentum mixing)

UV_HADV_C4

Activate 4th-order centred advection scheme
(should be used with explicit momentum mixing)

UV_HADV_C6

Activate 6th-order centred advection scheme
(should be used with explicit momentum mixing)

UV_HADV_WENO5 Activate WENO 5th-order advection scheme
UV_HADV_TVD Activate Total Variation Diminushing scheme

• Lateral Momentum Mixing

CPP options Description
UV_MIX_GEO Activate mixing on geopotential (constant depth) sur-

faces
UV_MIX_S Activate mixing on iso-sigma (constant sigma) sur-

faces
UV_VIS2 Activate Laplacian horizontal mixing of momentum
UV_VIS4 Activate Bilaplacian horizontal mixing of momentum
UV_VIS_SMAGO

Activate Smagorinsky parametrization of turbulent
viscosity
(only with UV_VIS2)

UV_VIS_SMAGO3D Activate 3D Smagorinsky parametrization of turbulent
viscosity

• Lateral Tracer Advection

212 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

CPP options Description
TS_HADV_UP3 3rd-order upstream biased advection scheme
TS_HADV_RSUP3 Split and rotated 3rd-order upstream biased advection

scheme
TS_HADV_UP5 5th-order upstream biased advection scheme
TS_HADV_RSUP5

Split and rotated 5th-order upstream biased advection
scheme
with reduced dispersion/diffustion

TS_HADV_C4 4th-order centred advection scheme
TS_HADV_C6

Activate 6th-order centred advection scheme

TS_HADV_WENO5 5th-order WENOZ quasi-monotonic advection
scheme for all tracers

BIO_HADV_WENO5

5th-order WENOZ quasi-monotone advection
scheme for
passive tracers (including biology and sediment
tracers)

• Lateral Tracer Mixing

CPP options Description
TS_MIX_ISO Activate mixing along isopycnal (isoneutral) surfaces
TS_MIX_GEO Activate mixing along geopotential surfaces
TS_MIX_S Activate mixing along iso-sigma surfaces
TS_DIF2 Activate Laplacian horizontal mixing of tracer
TS_DIF4 Activate Bilaplacian horizontal mixing of tracer
TS_MIX_IMP

Activate stabilizing correction of rotated diffusion
(used with TS_MIX_ISO and TS_MIX_GEO)

• Nudging

CPP options Description
ZNUDGING Activate nudging layer for zeta.
M2NUDGING Activate nudging layer for barotropic velocities.
M3NUDGING Activate nudging layer for baroclinic velocities.
TNUDGING Activate nudging layer for tracer.
ROBUST_DIAG Activate strong tracer nudging in the interior for diagnostic simulations

• Vertical Mixing

1.16. Appendices 213

Croco Documentation, Release 2.0.0

CPP options Description
BODYFORCE Apply surface and bottom stresses as body-forces
ANA_VMIX Activate analytical viscosity/diffusivity coefficients
BVF_MIXING Activate a simple mixing scheme based on the Brunt-

Väisälä frequency
LMD_MIXING

Activate Large/McWilliams/Doney mixing (turbulent
closure for
interior and planetary boundary layers) with
following options

LMD_SKPP Activate surface boundary layer KPP mixing
LMD_BKPP Activate bottom boundary layer KPP mixing
LMD_RIMIX Activate shear instability interior mixing
LMD_CONVEC Activate convection interior mixing
LMD_DDMIX Activate double diffusion interior mixing
LMD_NONLOCAL Activate nonlocal transport for SKPP

GLS_MIXING

Activate Generic Length Scale scheme as
implemented by Warner et al.
(2005), default is k-kl (see below)

GLS_MIX2017

Activate Generic Length Scale scheme with a sligthly
different
implementation (under test), default is k-epsilon (see
below)

GLS_KKL Activate K-KL (K=TKE; L=length Scale) as in Mellor
and Yamada [1974]

GLS_KOMEGA

Activate K-OMEGA (OMEGA=frequency of TKE
dissipation) originating
from Kolmogorov [1942]

GLS_KEPSILON Activate K-EPSILON (EPSILON=TKE dissipation)
as in Jones and Launder [1972]

GLS_GEN Activate generic model of Umlauf and Burchard
[2003]

• Equation of State

214 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

CPP options Description
SALINITY Activate salinity as an active tracer
NONLIN_EOS Activate nonlinear equation of state
SPLIT_EOS

Activate the split of the nonlinear equation of state in
adiabatic
and compressible parts for reduction of pressure
gradient errors

• Surface Forcing

CPP options Description
BULK_FLUX Activate bulk formulation for surface heat fluxes
BULK_FAIRALL Choose Fairall formulation (default: COAMPS formu-

lation)
BULK_EP Add in bulk formulation for fresh water fluxes
BULK_LW Add in long-wave radiation feedback from model SST
BULK_SMFLUX Add in bulk formulation for surface momentum fluxes
SST_SKIN Activate skin sst computation [Zeng and Beljaars,

2005]
ONLINE

Read native files and perform online interpolation on
ROMS grid
(default cubic interpolation)

QCORRECTION

Activate linearized bulk formulation providing heat
flux correction
dQdSST for nudging towards model SST

SFLX_CORR Activate freshwater flux correction around model SSS
ANA_DIURNAL_SW

Activate analytical diurnal modulation of short wave
radiations
(only appropriate if there is no diurnal cycle in data)

• Coupling

CPP options Description
OW_COUPLING Activate Ocean-Wave coupling
OA_COUPLING Activate Ocean-Atmosphere coupling
OA_MCT Use OASIS-MCT for coupling

• Sponge Layer

1.16. Appendices 215

Croco Documentation, Release 2.0.0

CPP options Description
SPONGE

Activate areas of enhanced viscosity and diffusivity
near lateral open boundaries.

SPONGE_GRID Automatic setting of the sponge width and value
SPONGE_DIF2 Sponge on tracers (default)
SPONGE_VIS2 Sponge on momentum (default)
SPONGE_SED Sponge on sediment (default)

• Lateral forcing

CPP options Description
CLIMATOLOGY

Activate processing of 2D/3D climatological data for
nudging layers and open boundary forcing

ZCLIMATOLOGY Activate processing of sea level
M2CLIMATOLOGY Activate processing of barotropic velocities
M3CLIMATOLOGY Activate processing of baroclinic velocities
TCLIMATOLOGY Activate processing of tracers
ZNUDGING Activate nudging layer for sea level
M2NUDGING Activate nudging layer for barotropic velocities
M3NUDGING Activate nudging layer for baroclinic velocities
TNUDGING Activate nudging layer for tracers
ROBUST_DIAG Activate nudging over the whole domain
FRC_BRY

Activate processing of 1D/2D climatological or
simulation/reanalysis data at open boundary points

Z_FRC_BRY Activate open boundary forcing for sea level
M2_FRC_BRY Activate open boundary forcing for barotropic veloci-

ties
M3_FRC_BRY Activate open boundary forcing for baroclinic veloci-

ties
T_FRC_BRY Activate open boundary forcing for tracers

• Bottom Forcing

CPP options Description
ANA_BSFLUX Activate analytical bottom salinity flux (generally 0)
ANA_BTFLUX Activate analytical bottom temperature flux (generally 0)

• Point Sources - Rivers

216 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

CPP options Description
PSOURCE Activate point sources (rivers)
ANA_PSOURCE

use analytical vertical profiles for point sources
(set in set_global_definitions.h)

PSOURCE_NCFILE Read variable river transports in netcdf file
PSOURCE_NCFILE_TS Read variable river concentration in netcdf file

• Open boundary conditions II

CPP options Description
OBC_VOLCONS

Activate mass conservation enforcement at open
boundaries
(with OBC_M2ORLANSKI)

OBC_M2SPECIFIED Activate specified open boundary conditions for
barotropic velocities

OBC_M2ORLANSKI Activate radiative open boundary conditions for
barotropic velocities

OBC_M2FLATHER Activate Flather open boundary conditions for
barotropic velocities

OBC_M2CHARACT

Activate open boundary conditions based on
characteristic methods
barotropic velocities

OBC_M3SPECIFIED Activate specified open boundary conditions for baro-
clinic velocities

OBC_M3ORLANSKI Activate radiative open boundary conditions for baro-
clinic velocities

OBC_TSPECIFIED Activate specified open boundary conditions for trac-
ers

OBC_TORLANSKI Activate radiative open boundary conditions for trac-
ers

OBC_TUPWIND Activate upwind open boundary conditions for tracers

• I/O - Diagnostics

CPP options Description
AVERAGES Process and output time-averaged data
AVERAGES_K Process and output time-averaged vertical mixing
DIAGNOSTICS_TS Store and output budget terms of the tracer equations
DIAGNOSTICS_TS_ADV Choose advection rather than transport formulation for tracer budgets
DIAGNOSTICS_TS_MLD Integrate tracer budgets over the mixed-layer depth
DIAGNOSTICS_UV Store and output budget terms of the momentum equations
XIOS Use XIOS IO server

• Biogeochemical models

1.16. Appendices 217

Croco Documentation, Release 2.0.0

CPP options Description
PISCES Activate 24-component PISCES biogeochemical model
BIO_NChlPZD Activate 5-component NPZD type model
BIO_N2PZD2 Activate 7-component NPZD type model
BIO_BioEBUS Activate 12-component NPZD type model

• Sediment Dynamics

CPP options Description
ANA_SEDIMENT Set analytical sediment ripple and bed parameters
ANA_WWAVE Analytical (constant) wave (hs,Tp,Dir) values.
SUSPLOAD Activate suspended load transport
BEDLOAD Activate bedload transport
MORPHODYN Activate morphodynamics
ANA_BPFLUX Set kinematic bottom flux of sediment tracer (if different from 0)
SLOPE_NEMETH Nemeth formulation for avalanching (Nemeth et al, 2006)
SLOPE_LESSER Lesser formulation for avalanching [Lesser et al., 2004]
BEDLOAD_SOULSBY Soulsby formulation for bedload (Soulsby, R.L. and J.S. Damgaard, 2005)
BEDLOAD_MPM Meyer-Peter-Muller formulation for bedload [Meyer-Peter and Müller, 1948]

• Bottom Boundary Layer

CPP options Description
ANA_WWAVE Set analytical wave forcing
ANA_BSEDIM Set analytical bed parameters (if SEDIMENT is unde-

fined)
Z0_BL Compute bedload roughness for ripple predictor and

sediment purposes
Z0_RIP

Determine bedform roughness ripple height and
ripple length
for sandy beds

Z0_BIO

Determine (biogenic) bedform roughness ripple
height and ripple
length for silty beds

• Wave-Current interactions

218 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

CPP options Description
MRL_WCI Set wave-current interaction model
ANA_WWAVE Analytical values for waves
WAVE_OFFLINE Set-wave offline (read from file) forcing
WKB_WWAVE Set WKB wave model
OW_COUPLING Set wave coupling for WWIII (to install separately)
MRL_CEW Set current feedback on waves
WKB_OBC_WEST Set East/West/North/South offshore forcing for WKB model
ANA_BRY_WKB Analytical boundary wave foring (from croco.in)
WAVE_BREAK_CT93 Thornton and Guza [1983] wave breaking (for WKB)
WAVE_BREAK_TG86 Church and Thornton [1993] wave breaking (for WKB)
WAVE_BREAK_TG86A Another Church and Thornton formulation
WAVE_ROLLER Set wave roller model
WAVE_STREAMING Set bottom wave streaming
WAVE_FRICTION Set bottom friction in WKB model (used for streaming)
WAVE_RAMP Set wave forcing ramp using wave_ramp parameter

1.16.2 croco.in

KEYWORD DESCRIPTION
title Configuration name
time_stepping

NTIMES : Number of time-steps required for the
simulation
dt : Baroclinic time step [in s]
NDTFAST : Number of barotropic time-steps
between each baroclinic time step.
For 2D configurations, ndtfast should be unity
NINFO : Number of time-steps between printing of
information to standard output

time_stepping_nbq
NDTNBQ
CSOUND_NBQ
VISC2_NBQ

S-coord
THETA_S: S-coordinate surface control parameter
THETA_B: S-coordinate bottom control parameter
Hc(m): Width of surface or bottom boundary layer in
which higher vertical resolution
is required during stretching

start_date Run start date (used with USE_CALENDAR)
end_date Run end date (used with USE_CALENDAR)
output_time_steps

DT_HIS(H)
DT_AVG(H)
DT_RST(H)

grid Grid filename
continues on next page

1.16. Appendices 219

Croco Documentation, Release 2.0.0

Table 2 – continued from previous page
KEYWORD DESCRIPTION
forcing Forcing filename
bulk_forcing Bulk forcing filename (used with BULK_FLUX)
climatology Climatology filename (boundary and nudging, used

with CLIMATOLOGY)
boundary Boundary filename (used with FRC_BRY`)
initial

NRREC: Switch to indicate start or re-start from a
previous solution. nrrec is the
time index of the initial or re-start NetCDF file
assigned for initialization.
If nrrec is negative (say nrrec = -1), the model will
start from the most recent time
record. That is, the initialization record is assigned
internally.
filename: Name of file containing the initial state.

restart
NRST: Number of time-steps between writing of
re-start fields
NRPFRST

0: write several records every NRST time steps
>0: create more than one file (with sequential
numbers) and write NRPRST records per file
-1: overwrite record every NRST time steps

filename: name of restart file

history
LDEFHIS: flag (T/F) for writing history files
NWRT: Number of time-steps between writing of
history fields
NRPFHIS:

0: write several records every NWRT time
steps
>0: create more than one file (with sequential
numbers) and write NRPHIS records per file
-1: overwrite record every NWRT time steps

filename: Name of history file

continues on next page

220 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Table 2 – continued from previous page
KEYWORD DESCRIPTION
averages

NTSAVG: Starting timestep for the accumulation of
output time-averaged data. For instance,
you might want to average over the last day of a
thirty-day run.
NAVG: Number of time-steps between writing of
averaged fields
NRPFAVG:

0: write several records every NAVG time steps
>0: create more than one file (with sequential
numbers) and write NRPFAVG records per file
-1: overwrite record every NAVG time steps

filename: Name of average file

primary_history_fields Flags for writing primary variables in history NetCDF
file

auxiliary_history_fields Flags for writing auxiliary variables in history
NetCDF file

primary_averages Flags for writing primary variables in average NetCDF
file

auxiliary_averages Flags for writing auxiliary variables in average
NetCDF file

rho0 Mean density used in the Boussinesq equation.
lateral_visc

VISC2: Laplaplacian background viscosity in m2/s
(with UV_VIS2 CPP option)
VISC4: Bilaplacian background viscosity in m4/s
(with UV_VIS4 CPP option)

tracer_diff2 TNU2(1:NT): Laplacian background diffusivity in
m2/s for each tracer (with TS_DIF2 CPP option)

tracer_diff4 TNU4(1:NT): Laplacian background diffusivity in
m4/s for each tracer (with TS_DIF4 CPP option)

vertical_mixing
Constant vertical viscosity coefficient in m2/s for
analytical vertical mixing scheme
(with ANA_VMIX CPP option)

bottom_drag
RDRG [m/s]: Drag coefficient for linear bottom
stress formulation
RDRG2: Drag coefficient for constant quadratic
bottom stress formulation
Zob [m]: Roughness length for Von-Karman
quadratic bottom stress formulation
Cdb_min: Minimum value of drag coefficient for
Von-Karman quadratic bottom stress formulation
Cdb_max: Maximum value of drag coefficient for
Von-Karman quadratic bottom stress formulation.

gamma2 Free- or partial- or no-slip wall boundary condition. 1
means free slip conditions are used.

continues on next page

1.16. Appendices 221

Croco Documentation, Release 2.0.0

Table 2 – continued from previous page
KEYWORD DESCRIPTION
sponge

sponge parameters are only needed if
SPONGE_GRID is undefined in
set_global_definitions.h;
otherwise, these parameters are assigned internally.
X_SPONGE [m]: width of sponge layers
V_SPONGE [m2/s]: viscosity/diffusivity values in
sponge layers. These values follow a
cosine profile from zero interior value to
V_SPONGE at the boundary.

nudg_cof
TauT_in [days]: Short nudging time scale used in
radiative open boundary conditions for
tracer signal propagating inward the computational
domain. This coefficient is used at
boundary points and imposes strong nudging towards
external data
TauT_out [days]: Long nudging time scale used in
radiative open boundary conditions for
tracer signal propagating outward the computational
domain. This coefficient is used at
boundary points and imposes mild nudging towards
external data. If CLIMATOLOGY is defined,
it is also used in nudging layers with gradual decrease
(cosine profile) from the open
boundary to the inner border of the nudging layer.
TauM_in [days]: Same as above, but for momentum
equations
TauM_out [days]: Same as above, but for momentum
equations

diagnostics
ldefdia: flag that activates the storage of the
instantaneous tracer budget terms in a diagnostic file
nwrtdia: Number of time-steps between writing of
diagnostic fields
nrpfdia:

0: write several records every NWRTDIA time
steps
>0: create more than one file (with sequential
numbers) and write NRPFDIA records per file
-1: overwrite record every NWRTDIA time
steps

filename: Name of instantaneous tracer diagnostic file

continues on next page

222 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Table 2 – continued from previous page
KEYWORD DESCRIPTION
diag_avg

ldefdia_avg: flag that activates the storage of
averaged tracer budget terms in a diagnostic file
ntsdia_avg: Starting timestep for the accumulation of
output time-averaged data. For
instance, you might want to average over the last day
of a thirty-day run.
nwrtdia_avg: Number of time-steps between writing
of averaged diagnostic fields
nprfdia_avg:

0: write several records every
NWRTDIA_AVG time steps

>0: create more than one file (with sequential
numbers) and write NRPFDIA_AVG records
per file
-1: overwrite record every NWRTDIA_AVG
time steps

filename: Name of average tracer diagnostic file

diag3D_history_fields
Flag to select which tracer equation (temp, salt, etc
. . .) to store in diagnostic file.
These terms are 3D.

diag2D_history_fields
Flags to select which tracer equation integrated over
the mixed layer depth (cf DIAGNOSTICS_TS_MLD)
to store in diagnostic file. These terms are 2D.

diag3D_average_fields Same as diag3D_history _fields but for averaged fields
diag2D_average_fields Same as diag2D_history _fields but for averaged fields
diagnosticsM

Same format as diagnostics but for momentum
equations
ldefdiaM:
nwrtdiaM:
nrpfdiaM:
filename:

diagM_avg Same format as diag_avg but for momentum equations
diagM_history_fields Flag to select which momentum equation (u,v) to store

in diagnostic file. These terms are 3D.
diagM_average _fields Same as diagM_history _fields but for averaged fields
diagnosticsM_bio Same format as diagnostics but for biogeochemical

budget terms (other than advection/diffusion)
diagbio_avg Same format as diag_avg but for biogeochemical bud-

get terms (other than advection/diffusion)
diagbioFlux_history_fields

Flag (T or F) to select which biogechemical tracer
flux to store in diagnostic file.
These terms are 3D. (For NPZD type model)

continues on next page

1.16. Appendices 223

Croco Documentation, Release 2.0.0

Table 2 – continued from previous page
KEYWORD DESCRIPTION
diagbioVSink_history_fields

Flag (T or F) to select which biogechemical tracer
sinking flux equation to store in diagnostic file
These terms are 3D. This is for NPZD type
model(BIO_NChlPZD, BIO_N2ChlPZD2 and
BIO_BioEBUS),
you need to follow the biogechemical tracers order.

diagbioGasExc_history_fields
Flag (T or F) to select which biogechemical tracer
Gas exchange flux equation to store in
diagnostic file. These terms are 2D.

diagbioFlux_average_fields Same as above but averaged
diagbioVSink_average_fields Same as above but averaged
diagbioGasExc_average_fields Same as above but averaged
biology Name of file containing the Iron dust forcing used in

the PISCES biogeochemical model
sediments Input file: sediment parameters input file
sediment_history_fields

Flags for storing sediment fields in history file
bed_thick:Thickness of sediment bed layer (m)
bed_poros: Porosity of sediment bed layer (no unit)
bed_fra(sand,silt): Volume fraction of sand/silt in bed
layer (no unit)

bbl_history_fieldsi
Flags for storing bbl fields in history file
Abed: Bed wave excursion amplitude (m)
Hripple: Bed ripple length (m)
Lripple: Bed ripple length (m)
Zbnot: Physical hydraulic bottom roughness (m)
Zbapp: Apparent hydraulic bottom roughness (m)
Bostrw: Wave-induced kinematic bottom stress (m)

floats
Lagrangian floats application. Same format as
diagnostics
LDEFFLT
NFLT
NRPFFLT
inpname, hisname

floats_fields Type of fields computed for each lagrangian floats
station_fields

Fixed station application. Same format as diagnostics
LDEFSTA
NSTA
NRPFSTA
inpname, hisname

continues on next page

224 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

Table 2 – continued from previous page
KEYWORD DESCRIPTION
psource

Nsrc: point source number
Isrc: I point source indice
Jsrc: J point source indice
Dsrc: Direction of point source flow (u=0,v=1)
Qbar [m3/s]: Total transport at point source
Lsrc: Logical switch for type of tracer to apply
Tsrc: Tracer value

psource_ncfile
Nsrc: point source number
Isrc: I point source indice
Jsrc: J point source indice
Dsrc: Direction of point source flow (u=0,v=1)
qbardir: Orientation: South=0 or North=0, East=0 or
West=1
Lsrc: Logical switch for type of tracer to apply
Tsrc: Tracer value in case of analytical value [#undef
PSOURCE_NCFILE_TS]
runoff file name: Input netCDF runoff file

1.16.3 Comparison of ROMS and CROCO versions

Models CROCO ROMS-
UCLA

ROMS-Rutgers /
COASWT

Origin UCLA-IRD-INRIA- IFREMER-SHOM-
CNRS

UCLA UCLA-Rutgers-USGS

Maintenance IRD-INRIA-IFREMER- SHOM-CNRS UCLA Rutgers-USGS
Realm Europe-World US West

Coast
US East Coast

Introductory
year

1999 (AGRIF) 2016 (CROCO) 2002 1998

CODE FEATURES

1.16. Appendices 225

Croco Documentation, Release 2.0.0

Models CROCO ROMS-UCLA ROMS-Rutgers /
COASWT

Parallelization

MPI or OpenMP
(Hybrid branch exists)

Hybrid MPI-OpenMP MPI or OpenMP

Nesting

Online
at barotropic level

Off-line (On-line at
baroclinic level and
not yet operational)

Off-line

Data assimilation 3DVAR 3DVAR 4DVAR
Wave-current interact. McWilliams et al. [2004] McWilliams et al. [2004]

Mellor [2003]
McWilliams et al.
[2004]

Air-sea coupling OASIS-MCT Home made MCT
Sediment Dynamics

Blaas et al. [2007]
MUSTANG

Blaas et al. [2007]

Blaas et al. [2007]
Warner et al. [2008]

Biogeochemistry

NPZD Gruber et al.
[2006],
PISCES

NPZD Gruber et al.
[2006]

EcoSim, NEMURO,
NPZD Franks,
NPZD Powell, Fennel

Sea ice none none Budgell [2005]
Vertical mixing KPP, GLS KPP, GLS KPP, GLS
Wetting-Drying Warner et al. [2013] none Warner et al. [2013]

TIME STEPPING

Models CROCO ROMS-UCLA ROMS-Rutgers /
COASWT

2D momentum Generalized FB AB3-
AM4

Generalized FB AB3-
AM4

LF-AM3 with FB feed-
back

3D momentum LF-AM3 LF-AM3 AB3

Tracers

LF-AM3 with stabilizing
correction for isopycnal
hyperdiffusion

LF-AM3 with stabilizing
correction for isopycnal
hyperdiffusion

LF-TR with explicit
geopotential diffusion
(no stabilizing correction
:
strong stability
constraint)

Internal waves LF-AM3 with FB feed-
back

LF-AM3 with FB feed-
back

Generalized FB (AB3-
TR)

Coupling stage Predictor Corrector

226 Chapter 1. Model Documentation

Croco Documentation, Release 2.0.0

STABILITY CONSTRAINTS (Max Courant number)

Models CROCO ROMS-UCLA ROMS-Rutgers / COASWT
2D 1.78 1.78 1.85
3D advection 1.58 1.58 0.72
Coriolis 1.58 1.58 0.72
Internal waves 1.85 1.85 1.14

1.16. Appendices 227

Croco Documentation, Release 2.0.0

228 Chapter 1. Model Documentation

CHAPTER

TWO

TUTORIALS

2.1 System requirements

2.1.1 Disk space

CROCO and CROCO_TOOLS source codes require less than 500 MB of disk space. Climatological datasets,
provided for regional configuration, require about 18 GB of disk space.

2.1.2 Compilers and Libraries

CROCO uses Fortran routines as well as cpp-keys. The I/O are in netcdf. It therefore requires to have:

• a C compiler

• a Fortran compiler

• a Netcdf library

• MPI libraries and compilers if running in parallel

CROCO_TOOLS use Matlab, and Python scripts.

2.1.3 Environment variables

A few environment variables for compilers and libraries should be declared to avoid issues when compiling and
running CROCO. If you are using Intel compilers for instance, you should declare the followings (in your .bashrc
file):

export CC=icc
export FC=ifort
export F90=ifort
export F77=ifort

For Netcdf, you should also declare your netcdf path, and add it to the PATH and LD_LIBRARY_PATH environment
variables. Here is an example:

export NETCDF=$HOME/softs/netcdf
export PATH=$NETCDF/bin:${PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${NETCDF}/lib

Note: Common errors associated with Netcdf are usually solved by checking that Netcdf is correctly declared in
your LD_LIBRARY_PATH

229

Croco Documentation, Release 2.0.0

2.2 Download

2.2.1 Downloading CROCO

To perform a regional simulation using CROCO, the modeler needs:

• the CROCO source code

• the CROCO_TOOLS scripts, which are tools for pre- and post-processing

• Datasets to create the input files:
– grid

– surface atmospheric forcing

– oceanic boundaries and initialization

2.2.1.1 Source code

CROCO and CROCO_TOOLS stable releases are available in the Download section: https://www.croco-ocean.
org/download/

They are available as tarball or can be checked-out using git. Follow instructions in the Download stable release
section.

2.2.1.2 External datasets

Some external datasets are needed by CROCO_TOOLS. Some of them, like bathymetry, tide atlas, atmospheric,
oceanic and biogeochemical climatological datasets are directly available in the Datasets section as tarball archives.

CROCO_TOOLS also provide pre-processing scripts for the download and create interannual forcings as:

• CFSR, ERA-interim, ERA5 . . . for atmospheric forcing

• SODA and MERCATOR for the oceanic boundaries and initialization

2.2.2 Getting other codes (coupling)

• OASIS coupler
To use CROCO in coupled mode (coupling with atmosphere and/or waves), OASIS3-MCT version 3 or later is
required.

Note: Older versions of OASIS do not include all the necessary functions as grid generation in parallel mode. If
you want to use an older version, you need to create your grids.nc, masks.nc, and areas.nc files first, and comment
the call to cpl_prism_grids in cpl_prism_define.F

To download OASIS3-MCT, you need to register on OASIS website: https://portal.enes.org/oasis/

Then, you can download the code from the website or use the git repository:

git clone https://gitlab.com/cerfacs/oasis3-mct.git

• WW3
WaveWatch3 is now hosted on github on a public repository: https://github.com/NOAA-EMC/WW3

230 Chapter 2. Tutorials

https://www.croco-ocean.org/download/
https://www.croco-ocean.org/download/
https://portal.enes.org/oasis/
https://github.com/NOAA-EMC/WW3

Croco Documentation, Release 2.0.0

Warning: Currently the coupling tools provided in croco are designed to work with the WW3 6.07.1 release
plus some additional changes in a few coupled routines in WW3 which are provided in the croco/SCRIPTS/
SCRIPTS_COUPLING/WW3_IN/modified_ftn directory. See readme_ww3_version in WW3_IN. More recent
versions of WW3 contains these modifications, but as these more recent versions are currently not tagged as
“releases”, we prefer to stick to the latest official release and just change these few modified routines.

You can clone the WW3 6.07.1 version with:

git clone --branch 6.07.1 --single-branch https://github.com/NOAA-EMC/WW3.git

And copy the modified routines:

cp ~/croco/croco/SCRIPTS/SCRIPTS_COUPLING/WW3_IN/modified_ftn/*.ftn ~/ww3/model/ftn/.

• WRF
Currently the distributed version of WRF does not include coupling with waves, and some other functionalities
we have recently implemented. We therefore suggest to use the fork including modifications for coupling with
WW3 and CROCO through the OASIS coupler, but note that this is a development version. . . https://github.com/
wrf-croco/WRF/tree/WRF-CROCO

You can clone it with git :

git clone https://github.com/wrf-croco/WRF.git

A tag is available for using the up-to-date wrf-croco version.

Note: If using older versions of the wrf-croco fork, you may encounter issues regarding a namelist variable named
max_cpldom, which is present in the up-to-date version, but was inexistent in previous version (with older version,
you should remove this variable from your namelist.input.base.complete file). We encourage to use the tagged
up-to-date version.

Other versions of WRF are available here: http://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://github.com/wrf-model/WRF

• WPS
WRF pre-processing system is also needed to prepare WRF configurations. It is available on the following github
repository: https://github.com/wrf-model/WPS

You can clone it with git:

git clone https://github.com/wrf-model/WPS.git

You need to use the same WPS version than the WRF version you use. Currenlty the WRF version on the WRF-
CROCO fork is WRF4.2.1. You should therefore use the WPS 4.2 version. To do so, with git you can move to the
appropriate tag:

cd WPS
git checkout tags/v4.2

2.2. Download 231

https://github.com/wrf-croco/WRF/tree/WRF-CROCO
https://github.com/wrf-croco/WRF/tree/WRF-CROCO
http://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://github.com/wrf-model/WRF
https://github.com/wrf-model/WPS

Croco Documentation, Release 2.0.0

2.3 Contents & Architecture

2.3.1 Architecture

A classical work architecture consists in:

croco/croco
croco/croco_tools
CONFIGS

To run a CROCO simulation, you need to follow these 3 steps:

• complete the pre-processing (for realistic cases) => see Pre-processing tutorial

• set-up the parameters and setting files (param.h and cppdefs.h) and compiled the model

• set-up the input file croco.in and run the model

CROCO contents, main inputs and setting files are described in the following:

2.3.2 Contents

CROCO and its tools are distributed in separate directories croco and croco_tools.

2.3.2.1 croco

AGRIF Agrif library for nesting
CVTK Regression test library
DOC_SHINX Model documentation
MPI_NOLAND_preprocessing Fortran utility to determine the optimal MPI decom-

position to supress land computation
MUSTANG MUSTANG sediment model
OCEAN CROCO source files
PISCES PISCES biogeochemical model source files
README.md Informations on CROCO version
SCRIPTS Scripts for plurimonth runs, online analysis tools, and

coupled simulations
TEST_CASES Test cases namelists and useful files
XIOS XIOS I/O server library
create_config.bash

Script to setup your configuration. It creates a
configuration directory,
and copy useful files in it from croco and
croco_tools sources

232 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.3.2.2 croco_tools

CROCO preprocessing tools have been primarily developed under Matlab software by IRD researchers (former
Roms_tools).

Note: These tools have been made to build easily regional configurations using climatological data. To use in-
terannual data, some facilities are available (NCEP, CFSR, ERA5, ERA-Interim, QuickScat data for atmospheric
forcing, SODA and CMEMS/Mercator for lateral boundaries). However, to use other data, you will need to adapt
the scripts. All utilities/toolbox requested for matlab crocotools programs are provided within UTILITIES direc-
tory.

2.3. Contents & Architecture 233

Croco Documentation, Release 2.0.0

234 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.3.2.2.1 Scripts

Aforc_CFSR

Scripts for the recovery of surface forcing data (based
on CFSR reanalysis) for
interannual simulations

Aforc_ECMWF

Scripts for the recovery of surface forcing data (based
on ECMWF-ERAinterim simulations) for
interannual simulations

Aforc_ERA5

Scripts for the recovery of surface forcing data (based
on ECMWF-ERA5 simulations) for
interannual simulations

Aforc_NCEP

Scripts for the recovery of surface forcing data (based
on NCEP2 reanalysis) for
interannual simulations

Aforc_QuikSCAT Scripts for the recovery of wind stress from satellite
scatterometer data (QuickSCAT)

Coupling_tools Scripts for preparing coupled simulations
Diagnostic_tools A few Matlab scripts for animations and basic statisti-

cal analysis
Forecast_tools Scripts for the generation of an operational oceanic

forecast system
Nesting_tools Preprocessing tools used to prepare nested models
Oforc_OGCM

Scripts for the recovery of initial and lateral boundary
conditions from global OGCMs
(SODA [Carton, 2005] or CMEMS/Mercator
[Lellouche et al., 2021]) for inter-annual simulations

Opendap_tools LoadDAP mexcdf and several scripts to automatically
download data over the Internet

Preprocessing_tools Preprocessing Matlab scripts (make_grid.m,
make_forcing, etc. . .)

Rivers Scripts to prepare time-varying runoff forcing file and
compute the runoff location

Tides

Matlab routines to prepare CROCO tidal simulations.
Tidal data are derived from the
Oregon State University global models of ocean tides
TPXO6 and TPXO7 [Egbert and Erofeeva, 2002]
: http://www.oce.orst.edu/research/po/research/tide/
global.html

Visualization_tools Matlab scripts for the CROCO visualization graphic
user interface

croco_pyvisu Python toolbox for CROCO visualization graphic user
interface

2.3. Contents & Architecture 235

http://www.oce.orst.edu/research/po/research/tide/global.html
http://www.oce.orst.edu/research/po/research/tide/global.html

Croco Documentation, Release 2.0.0

2.3.2.2.2 UTILITIES

export_fig A MATLAB toolbox for exporting publication quality
figures : https://github.com/altmany/export_fig

mask Land mask edition toolbox developed by A.Y.
Shcherbina.

mex60 Matlab NetCDF interface for 32 & 64 bits Linux ar-
chitectures and old matlab version: 6 and before

mexcdf/mexnc

Matlab NetCDF interface for 32 & 64 bits Linux
architectures, MatlabR14sp1 until R2008a
(http://mexcdf.sourceforge.net/downloads/
mexcdf-R2008a.r2691.zip). For next releases of
Matlab,
R2008b, R2009a, it is more simpler, either use the
native NetCDF toobox of matlab or use the
last release of mexcf at the same url for version after
R2008a.
(http://mexcdf.sourceforge.net/downloads/mexcdf.
r2802.zip)

mexcdf/netcdf_toolbox The Matlab NetCDF toolbox available in the same
mexcdf package.

m_map The Matlab mapping toolbox (http://www2.ocgy.ubc.
ca/rich/map.html).

netcdf_x86_64 The NetCDF Fortran library for Linux, compiled with
ifort on a 64 bits architecture.

236 Chapter 2. Tutorials

https://github.com/altmany/export_fig
http://mexcdf.sourceforge.net/downloads/mexcdf-R2008a.r2691.zip
http://mexcdf.sourceforge.net/downloads/mexcdf-R2008a.r2691.zip
http://mexcdf.sourceforge.net/downloads/mexcdf.r2802.zip
http://mexcdf.sourceforge.net/downloads/mexcdf.r2802.zip
http://www2.ocgy.ubc.ca/rich/map.html
http://www2.ocgy.ubc.ca/rich/map.html

Croco Documentation, Release 2.0.0

2.3. Contents & Architecture 237

Croco Documentation, Release 2.0.0

2.3.2.2.3 DATASETS

CARS2009

CSIRO Atlas of Regional Seas database. Annual,
seasonal and monthly climatology
for temperature, salinity, nitrate, phosphate and
oxygen

COADS05 Directory of the surface fluxes global monthly clima-
tology at resolution (Da Silva et al., 1994)

GSHHS

A Global Self-consistent, Hierarchical,
High-resolution Geography Database
[Wessel and Smith, 1996]. Original data can be found
at https://www.soest.hawaii.edu/pwessel/gshhg/

GOT99.2

Atlas of the loading tide for M2 S2 N2 K2 K1 O1 P1
Q1

QuikSCAT_clim QuickSCAT monthly climatology of wind stress
RUNOFF_DAI

River discharge monthly climatology in 𝑚.𝑠−3 for
the 925 largest rivers
reaching the ocean (from Dai en Trenberth, 2000)

SST_pathfinder

SST global monthly climatology at a finer resolution
(9.28 km) than COADS05, computed
from AVHRR-Pathfinder observations from 1985 to
1997 [Casey and Cornillon, 1999]

SeaWifs Surface chlorophyll-a climatology based on SeaWifs
observations

TPX07 Directory of the global model of ocean tides TPXO7
[Egbert and Erofeeva, 2002]

Topo

Location of the global topography dataset at 2°
resolution [Smith and Sandwell, 1997].
Original data can be found at:
http://topex.ucsd.edu/cgi-bin/get_data.cgi

WOA2009

World Ocean Atlas 2009 global datase
References list: http:
//www.nodc.noaa.gov/OC5/WOA09/pubwoa09.html

WOAPISCES

A global dataset for biogeochemical PISCES data
(annual and seasonal climatology).
References are :
Fe and DOC : Aumont and Bopp [2006]
Si, O2, NO3, PO4 from WOA2005,
DIC and Alkalinity come from Goyet et al.238 Chapter 2. Tutorials

https://www.soest.hawaii.edu/pwessel/gshhg/
http://topex.ucsd.edu/cgi-bin/get_data.cgi
http://www.nodc.noaa.gov/OC5/WOA09/pubwoa09.html
http://www.nodc.noaa.gov/OC5/WOA09/pubwoa09.html

Croco Documentation, Release 2.0.0

2.4 Summary of essential steps

1. Compilation
CROCO needs to be compiled for each configuration (grid, MPI decomposition, paramterizations. . .).
The files that need to be edited are (available in croco/OCEAN directory):

cppdefs.h

CPP-keys* allowing to select configuration,
numerical schemes, parameterizations,
forcing and boundary conditions
* CROCO extensively uses the C preprocessor
(cpp) during compilation to
replace code statements, insert files into the
code, and select relevant
parts of the code depending on its directives.

param.h

Grid settings: the values of the model grid size
are:

LLm0 points in the X direction
MMm0 points in the Y direction
N vertical levels

For realistic regional cases, LLm0 and MMm0
are given by running make_grid.m,
and N is defined in crocotools_param.m

param.h also contains: Parallelisation settings
Tides, Wetting-Drying, Point sources, Floats,
Stations specifications

jobcomp the compilation script (including settings for
paths, compilers, libraries, etc)

2. Namelist
CROCO namelist input file croco.in contains several configurations settings such as: the time step-
ping, the vertical coordinate settings, the I/O settings and paths, some parameters for the model, . . . It
has to be edited before running. It is available in croco/OCEAN directory for regional configurations,
and in croco/TEST_CASES directory for test cases.

3. Input files
CROCO needs the following input files to run:

• CROCO grid file: croco_grd.nc

• CROCO surface forcing file: croco_frc.nc (or croco_blk.nc)

• CROCO vertical boundary conditions: croco_bry.nc (or croco_clim.nc)

• CROCO initial conditions: croco_ini.nc

They can be created using the Preprocessing croco_tools, see dedicated tutorial. These files are eventu-
ally not mandatory in test cases for which the useful settings are defined analytically within the CROCO
code.

4. Run
CROCO can be run in serial or parallel mode. See the run tutorial.

5. Outputs
CROCO usual outputs are:

2.4. Summary of essential steps 239

Croco Documentation, Release 2.0.0

• CROCO restart file: croco_rst.nc

• CROCO instantaneous output file: croco_his.nc

• CROCO averaged output file: croco_avg.nc

• CROCO log file: croco.log if you have defined the LOGFILE key in cppdefs.h : # define LOG-
FILE

Other output files can be generated depending on the settings provided in croco.in.

2.5 Test Cases

2.5.1 BASIN

1. Create a configuration directory:

mkdir ~/CONFIGS/BASIN

2. Copy the input files for compilation from croco sources:

cd ~/CONFIGS/BASIN
cp ~/croco/croco/OCEAN/cppdefs.h .
cp ~/croco/croco/OCEAN/param.h .
cp ~/croco/croco/OCEAN/jobcomp .

3. Edit cppdefs.h for using BASIN case

define BASIN

undef REGIONAL

You can also explore the CPP options selected for BASIN case.

You can check the BASIN settings in ``param.h``.

4. Edit the compilation script jobcomp:

set source, compilation and run directories
#
SOURCE=~/croco/croco/OCEAN
SCRDIR=./Compile
RUNDIR=`pwd`
ROOT_DIR=$SOURCE/..
#
determine operating system
#
OS=`uname`
echo "OPERATING SYSTEM IS: $OS"

#
compiler options
#
FC=$FC

#
set MPI directories if needed
#

(continues on next page)

240 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

MPIF90=$MPIF90
MPIDIR=$(dirname $(dirname $(which $MPIF90)))
MPILIB="-L$MPIDIR/lib -lmpi -limf -lm"
MPIINC="-I$MPIDIR/include"

set NETCDF directories
#
#---
Use :
#-lnetcdf : version netcdf-3.6.3 --
#-lnetcdff -lnetcdf : version netcdf-4.1.2 --
#-lnetcdff : version netcdf-fortran-4.2-gfortran --
#---
#
#NETCDFLIB="-L/usr/local/lib -lnetcdf"
#NETCDFINC="-I/usr/local/include"
NETCDFLIB=$(nf-config --flibs)
NETCDFINC=-I$(nf-config --includedir)

5. Compile the model:

• By using classical launch command (on individual computers):

./jobcomp > jobcomp.log

• OR by using a batch script (e.g. PBS) to launch the model (in clusters): For DATARMOR:

cp $CROCO_DIR/job_comp_datarmor.pbs .
qsub job_comp_datarmor.pbs

If compilation is successful, you should have a croco executable in your directory.

You will also find a Compile directory containing the model source files:

• .F files: original model source files that have been copied from $croco/OCEAN

• _.f files: pre-compiled files in which only parts defined by cpp-keys are kept

• .o object files

6. Copy the namelist input file for BASIN case:

cp ~/croco/croco/TEST_CASES/croco.in.Basin croco.in

Eventually edit it.

7. Run the model:

./croco croco.in > croco.out

If your run is successful you should obtain the following files:

basin_rst.nc # restart file
basin_his.nc # instantaneous output file

8. Have a look at the results:

ncview basin_his.nc

9. Test: some questions:

• What is the size of the grid (see param.h)?

2.5. Test Cases 241

Croco Documentation, Release 2.0.0

• What are the name of the horizontal directions?

• What is the spatial resolution in both horizontal directions?

• How many vertical levels do you have?

• How are the vertical levels distributed (look for the cpp key NEW_S_COORD)?

• What are the initial dynamical conditions (see both cppdefs.h and croco.in)?

• What do the air-sea exchanges look like?

10. Re-run this case in parallel on 4 CPUs:

To run in parallel, your first need to edit cppdefs.h, param.h, and to recompile.

• Edit cppdefs.h:

define MPI

• Edit param.h:

#ifdef MPI
integer NP_XI, NP_ETA, NNODES
parameter (NP_XI=2, NP_ETA=2, NNODES=NP_XI*NP_ETA)
parameter (NPP=1)
parameter (NSUB_X=1, NSUB_E=1)

Note: MPI tiles should be at least 20x20 points.

• Recompile.

• Run the model in parallel:

– By using classical launch command (on individual computers):

mpirun -np NPROCS croco croco.in

where NPROCS is the number of CPUs you want to allocate. mpirun -np NPROCS is a typical
mpi command, but it may be adjusted to your MPI compiler and machine settings.

– OR by using a batch script (e.g. PBS) to launch the model (in clusters), examples are provided:

cp ~/croco/croco_tools/job_croco_mpi.pbs .

Edit job_croco_mpi.pbs according to your MPI settings in param.h and launch the run:

qsub job_croco_mpi.pbs

Warning: NPROCS needs to be consistent to what you indicated in param.h during compilation

242 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.5.2 Set up you own test case

Example: set up a convection test case: test case that mimic the winter convection happening in the North-
Western Mediterranean sea

1. Create a configuration directory:

mkdir ~/CONFIGS/CONVECTION

2. Copy the input files from croco sources:

cd ~/CONFIGS/CONVECTION
cp ~/croco/croco/OCEAN/cppdefs.h .
cp ~/croco/croco/OCEAN/param.h .
cp ~/croco/croco/OCEAN/jobcomp .
cp ~/croco/croco/OCEAN/croco.in .

3. Edit cppdefs.h, param.h, and croco.in for your new CONVECTION case:

• Add a dedicated key for this test case CONVECTION (in cppdefs.h)

• Set up a flat bottom; 2500 m deep (variable depth in ana_grid.F and follow what is performed under
the key BASIN, for instance)

• Set up your grid: 1000x1000x200 grid points (respectively in xi, eta and vertical directions) (parameters
LLm0, MMm0, and N in param.h)

• Specify a length and width of 50km in both directions (xi, eta) (variables Length_XI, Length_ETA in
ana_grid.F)

• Set up an almost cold start with velocity component fields set to white noise (see in ana_initial.F
what is performed for other test cases and fill in arrays u,v) around 0.1 mm/s

• Set up the initial ssh fields to zero (arrays zeta in ana_initial.F)

• Set up the initial stratification (i.e. the temperature and salinity fields) (in ana_initial.F: array t)

• Set up the wind stress forcing (svstr, sustr in analytical.F ; you may follow what is set for INNER-
SHELF; not necessary)

• Set the permanent heat surface flux (stflx= -500 w/m2 (-500/rho0*Cp) in analytical.F in subroutine
ana_stflux_tile)

Warning: In cppdefs.h define your own cpp key CONVECTION, which might be a clone of the
key BASIN ; in case we add the salinity (concerning the BASIN case), do not forget to add the keys
ANA_SSFLUX and ANA_BSFLUX .

Warning: In croco.in in case we add (with respect to the BASIN case) the salinity do not forget to
modify the number of tracers written 2*T and the number of Akt (2*.1.0e-6)

Warning: In croco.in we adjust the time step and ndtfast to reach the stability

4. Edit the compilation script jobcomp:

set source, compilation and run directories
#
SOURCE=~/croco/croco/OCEAN
SCRDIR=./Compile

(continues on next page)

2.5. Test Cases 243

Croco Documentation, Release 2.0.0

(continued from previous page)

RUNDIR=`pwd`
ROOT_DIR=$SOURCE/..

#
compiler options
#
FC=$FC

#
set MPI directories if needed
#
MPIF90=$MPIF90
MPIDIR=$(dirname $(dirname $(which $MPIF90)))
MPILIB="-L$MPIDIR/lib -lmpi -limf -lm"
MPIINC="-I$MPIDIR/include"

set NETCDF directories
#
#---
Use :
#-lnetcdf : version netcdf-3.6.3 --
#-lnetcdff -lnetcdf : version netcdf-4.1.2 --
#-lnetcdff : version netcdf-fortran-4.2-gfortran --
#---
#
#NETCDFLIB="-L/usr/local/lib -lnetcdf"
#NETCDFINC="-I/usr/local/include"
NETCDFLIB=$(nf-config --flibs)
NETCDFINC=-I$(nf-config --includedir)

5. Compile the model:

./jobcomp > jobcomp.log

If compilation is successful, you should have a croco executable in your directory.

6. Run the model:

• Classical launch command is (but should probably be launched in a dedicated submission job in clus-
ters. . . see next item):

mpirun -np NPROCS croco croco.in

where NPROCS is the number of CPUs you want to allocate. mpirun -np NPROCS is a typical mpi
command, but it may be adjusted to your MPI compiler and machine settings.

• OR by using a batch script (e.g. PBS) to launch the model (in clusters), examples are provided:

cp ~/croco/croco_tools/job_croco_mpi.pbs .

Edit job_croco_mpi.pbs according to your MPI settings in param.h and launch the run:

qsub job_croco_mpi.pbs

Warning: NPROCS needs to be consistent to what you indicated in param.h during compilation

7. If you want to try another mixing parameterization:

244 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

• Add in cppdefs.h, in your CONVECTION case, the following cpp keys dedicated to the closure:

#define GLS_MIXING

• In croco.in add this lines for GLS history and averages fields

gls_history_fields: TKE GLS Lscale
F F F

gls_averages: TKE GLS Lscale
F F F

• Recompile, and re-run the model

8. If you want to add stflux as tanh signal:

• in analytical.F:

real*4 r2,RR2
! Set kinematic surface heat flux [degC m/s] at horizontal
! RHO-points.
!

r2= 10**2
ic = LLm0/2.
jc = MMm0/2.
do j=JstrR,JendR
do i=IstrR,IendR
RR2 = (i+iminmpi-ic)*(i+iminmpi-ic)+(jminmpi-jc)*(jminmpi-jc)
stflx(i,j,itemp)=(-200. -200. * tanh((r2-RR2)/1000.))/rho0/Cp

enddo
enddo

• Recompile and re-run the model.

2.6 Regional: Preparing your configuration

To prepare your configuration working directory, you can use the script create_config.bash provided in
CROCO sources:

cp ~/croco/croco/create_config.bash ~/CONFIGS/.

Edit your paths and settings in create_config.bash:

→˓#==
BEGIN USER MODIFICATIONS

Machine you are working on
Known machines: Linux DATARMOR IRENE JEANZAY

MACHINE="Linux"

CROCO parent directory
(where croco_tools directory and croco source directory can be found)

CROCO_DIR=~/croco/croco
TOOLS_DIR=~/croco/croco_tools

Configuration name
(continues on next page)

2.6. Regional: Preparing your configuration 245

Croco Documentation, Release 2.0.0

(continued from previous page)

MY_CONFIG_NAME=BENGUELA_LR

Home and Work configuration directories

MY_CONFIG_HOME=~/CONFIGS
MY_CONFIG_WORK=~/CONFIGS

Options of your configuration
models_incroco=(all-prod)

Run create_config.bash:

./create_config.bash

A directory named BENGUEAL_LR should be created.

You can also manually create your configuration directory, by copying the required files from croco sources:

mkdir ~/CONFIGS/BENGUELA_LR
cd ~/CONFIGS/BENGUELA_LR

For pre-processing:
cp ~/croco/croco_tools/crocotools_param.m .
cp ~/croco/croco_tools/start.m .

For compiling
cp ~/croco/croco/OCEAN/cppdefs.h .
cp ~/croco/croco/OCEAN/param.h .
cp ~/croco/croco/OCEAN/jobcomp .

For running
cp ~/croco/croco/OCEAN/croco.in .

In your configuration working directory, you need at least the following files:

• For preprocessing:

– crocotools_param.m

– start.m

• For compiling:

– param.h

– cppdefs.h

– jobcomb

• For running:

– croco.in

246 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.7 Regional: Preprocessing (Matlab)

CROCO preprocessing tools have been developed under Matlab software by IRD researchers (former Roms_tools).
Note: These tools have been made to build easily regional configurations using climatological data. To use interan-
nual data, some facilities are available (NCEP, CFSR, QuickScat data for atmospheric forcing, SODA and ECCO
for lateral boundaries). However, to use other data, you will need to adapt the scripts. All utilities/toolbox re-
quested for matlab crocotools programs are provided within the UTILITIES directory, or can be downloaded here:
http://www.croco-ocean.org/download/utilities/

2.7. Regional: Preprocessing (Matlab) 247

http://www.croco-ocean.org/download/utilities/

Croco Documentation, Release 2.0.0

248 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.7.1 Contents of the croco_tools

Aforc_CFSR

Scripts for the recovery of surface forcing data (based
on CFSR reanalysis) for
interannual simulations

Aforc_ECMWF

Scripts for the recovery of surface forcing data (based
on ECMWF-ERAinterim simulations) for
interannual simulations

Aforc_ERA5

Scripts for the recovery of surface forcing data (based
on ECMWF-ERA5 simulations) for
interannual simulations

Aforc_NCEP

Scripts for the recovery of surface forcing data (based
on NCEP2 reanalysis) for
interannual simulations

Aforc_QuikSCAT Scripts for the recovery of wind stress from satellite
scatterometer data (QuickSCAT)

Coupling_tools Scripts for preparing coupled simulations
Diagnostic_tools A few Matlab scripts for animations and basic statisti-

cal analysis
Forecast_tools Scripts for the generation of an operational oceanic

forecast system
Nesting_tools Preprocessing tools used to prepare nested models
Oforc_OGCM

Scripts for the recovery of initial and lateral boundary
conditions from global OGCMs
(SODA [Carton, 2005] or CMEMS/Mercator
[Lellouche et al., 2021]) for inter-annual simulations

Opendap_tools LoadDAP mexcdf and several scripts to automatically
download data over the Internet

Preprocessing_tools Preprocessing Matlab scripts (make_grid.m,
make_forcing, etc. . .)

Rivers Scripts to prepare time-varying runoff forcing file and
compute the runoff location

Tides

Matlab routines to prepare CROCO tidal simulations.
Tidal data are derived from the
Oregon State University global models of ocean tides
TPXO6 and TPXO7 [Egbert and Erofeeva, 2002]
: http://www.oce.orst.edu/research/po/research/tide/
global.html

Visualization_tools Matlab scripts for the CROCO visualization graphic
user interface

croco_pyvisu Python toolbox for CROCO visualization graphic user
interface

UTILITIES Utilities/toolbox requested for matlab crocotools pro-
grams2.7. Regional: Preprocessing (Matlab) 249

http://www.oce.orst.edu/research/po/research/tide/global.html
http://www.oce.orst.edu/research/po/research/tide/global.html

Croco Documentation, Release 2.0.0

2.7.2 Philosophy of the croco_tools

• 2 scripts are used to set-up your Matlab environment and your configuration settings:

start.m useful paths for croco_tools Matlab scripts
crocotools_param.m namelist file for Matlab pre-processing

• start.m: has to be launched at the beginning of any matlab session to set the path to utilities and croco
tools routines. Edit mypath and myutilpath

• crocotools_param.m: defines all the parameters and paths needed to build the grid, forcing and boundary
files. Edit the different sections.

Note: In the croco_tools toolbox, the native Matlab Netcdf library is not used. A dedicated Netcdf library is
provided and used. Its path is added to your Matlab environment through the the start.m script.

• Steps for creating a configuration are:

– build the grid

– build the atmospheric forcing (not necessary when coupling with an atmospheric model)

– build the lateral boundary conditions (3D currents, temperature and salinity, barotropic currents, sur-
face elevation)

– build the initial conditions

2.7.3 Climatological pre-processing

First we will start by preparing surface and boundary conditions from climatological datasets. Those datasets can
be downloaded on CROCO website:

https://www.croco-ocean.org/download/

250 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

CARS2009

CSIRO Atlas of Regional Seas database. Annual,
seasonal and monthly climatology
for temperature, salinity, nitrate, phosphate and
oxygen

COADS05 Directory of the surface fluxes global monthly clima-
tology at resolution (Da Silva et al., 1994)

GOT99.2

Atlas of the loading tide for M2 S2 N2 K2 K1 O1 P1
Q1

QuikSCAT_clim QuickSCAT monthly climatology of wind stress
RUNOFF_DAI

River discharge monthly climatology in 𝑚.𝑠−3 for
the 925 largest rivers
reaching the ocean (from Dai en Trenberth, 2000)

SST_pathfinder

SST global monthly climatology at a finer resolution
(9.28 km) than COADS05, computed
from AVHRR-Pathfinder observations from 1985 to
1997 [Casey and Cornillon, 1999]

SeaWifs Surface chlorophyll-a climatology based on SeaWifs
observations

TPX07 Directory of the global model of ocean tides TPXO7
[Egbert and Erofeeva, 2002]

Topo

Location of the global topography dataset at 2°
resolution (Smith and Sandwell, 1997).
Original data can be found at:
http://topex.ucsd.edu/cgi-bin/get_data.cgi

WOA2009

World Ocean Atlas 2009 global datase
References list: http:
//www.nodc.noaa.gov/OC5/WOA09/pubwoa09.html

WOAPISCES

A global dataset for biogeochemical PISCES data
(annual and seasonal climatology).
References are :
Fe and DOC : Aumont and Bopp [2006]
Si, O2, NO3, PO4 from WOA2005,
DIC and Alkalinity come from Goyet et al.

1. First you may need to edit start.m, which contains the path to all useful croco_tools Matlab scripts:

disp(['Add the paths of the different toolboxes'])
(continues on next page)

2.7. Regional: Preprocessing (Matlab) 251

http://topex.ucsd.edu/cgi-bin/get_data.cgi
http://www.nodc.noaa.gov/OC5/WOA09/pubwoa09.html
http://www.nodc.noaa.gov/OC5/WOA09/pubwoa09.html

Croco Documentation, Release 2.0.0

(continued from previous page)

tools_path=['~/croco/croco_tools/'];
croco_path=['~/croco/croco/'];

Note: You can use these env variables in matlab by using getenv('ENVVAR'), example: if you have a
$tools environment variables for croco_tools, you can write in start.m: tools_path=[getenv('tools')
'/'];

2. Then edit crocotools_param.m, which is the namelist file for Matlab pre-processing:
crocotools_param.m is separated into several sections:

1 - Configuration parameters used by make_grid.m (and others..)
2 - Generic file and directory names need to match your work architecture
3 - Surface forcing parameters used by make_forcing.m and by make_bulk.m
4 - Open boundaries and initial conditions parame-
ters

used by make_clim.m, make_biol.m, make_bry.m
make_OGCM.m and make_OGCM_frcst.m

5 - Parameters for tidal forcing used by make_tides.m
6 - Reference date and simulation times used for make_tides, make_CFSR (or

make_NCEP), make_OGCM
7 - Parameters for Interannual forcing SODA, ECCO, CFSR, NCEP, . . .
8 - Parameters for the forecast system used by make_forecast.m
9 - Parameters for the diagnostic tools used by scripts in Diagnostic_tools

The first section is already set for BENGUELA_LR configuration, so you just need to change the second
section: directory names:

%%%
%
% 2 - Generic file and directory names
%
%%%

%
% CROCOTOOLS directory
%
CROCOTOOLS_dir = ['~/croco/croco_tools/'];
%
% Run directory
%
RUN_dir=[pwd,'/'];
%
% CROCO input netcdf files directory
%
CROCO_files_dir=[RUN_dir,'CROCO_FILES/'];
%
% Global data directory (etopo, coads, datasets download from ftp, etc..)
%
DATADIR=['~/DATA/DATASETS_CROCOTOOLS/'];
%
% Forcing data directory (ncep, quikscat, datasets download with opendap, etc..)
%
FORC_DATA_DIR = ['~/DATA/'];

252 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

Note: The crocotools_param.m is called at the beginning of all Preprocessing script. You do not have
to launch it independently.

3. Now you are ready to launch pre-processing in Matlab: .. note:

All the pre-processing scripts used for climatological forcing are in the
``Preprocessing_tools`` directory

Launch Matlab, and set up paths:

matlab
start

Build the grid:

make_grid

During the grid generation process, the question “Do you want to use editmask ? y,[n]” is asked. The default
answer is n (for no). If the answer is y (for yes), editmask, the graphic interface developed by A.Y.Shcherbina,
will be launched to manually edit the mask. Otherwise the mask is generated from the unfiltered topography
data. A procedure prevents the existence of isolated land (or sea) points.

Finally, a figure illustrates the obtained bottom topography. Note that at his low resolution (1/3°), the topog-
raphy has been strongly smoothed.

Build the atmospheric forcing: 2 options are available:

• create a forcing file with wind stress (zonal and meridional components), surface net heat flux, surface
freshwater flux (E-P), solar shortwave radiation, SST, SSS, surface net sensitivity to SST (used for heat
flux correction dQdSST for nudging towards model SST and model SSS)

• or create a bulk file which will be read during the run to perform bulk parameterization of the fluxes
using COAMPS or Fairall 2003 formulation. This bulk file contains: surface air temperature, relative
humidity, precipitation rate, wind speed at 10m, net outgoing longwave radiation, downward longwave
radiation, shortwave radiation, surface wind speed (zonal and meridional components). It also contains
surface wind stress (zonal and meridional components), but it is not requested and used in the model
(except for specific debugging work). The bulk formulation computes its own wind stress.

make_bulk

or:

make_forcing

The settings relative to surface forcing are in section 3 of crocotools_param.m. In the case of
climatological forcing, the variables are cycled. You can see that here, for the sake of simplicity, we
are running the model on a repeating climatological year of 360 days.

A few figures illustrate the wind stress vectors and norm at 4 different periods of the year.

Note: make_bulk creates a forcing file that will be used with the cpp key BULK_FLUX, while
make_forcing creates a forcing file containing wind stress directly and will be used when undefined
BULK_FLUX. This second option is relevant if your atmospheric forcing comes from an atmospheric
model with sufficient output frequency, or/and if your are comparing forced and coupled runs. Other-
wise it is suggested to use make_bulk.

Build the lateral boundary conditions: 2 options are available:

2.7. Regional: Preprocessing (Matlab) 253

Croco Documentation, Release 2.0.0

make_bry

Note: make_bry requests that you have previously run make_forcing to compute Ekman forcing at
the surface.

or:

make_clim

The settings relative to boundary conditions are in section 4 of crocotools_param.m.

A few figures illustrate vertical sections of temperature.

Note: make_clim interpolates the oceanic forcing fields over the whole domain: only boundary points
+ the 10 next points are actually used for sponge + nudging. Advantage: sponge + nudging layers at
the boundaries, Disadvantage: large amount of unused data.

make_bry interpolates the oceanic forcing fields at the boundary points only. Advantage: light files
(useful for long simulations), Disadvantage: no nudging layers (only a sponge layer for smooth transi-
tion between the boundaries and the interior values).

Build the initial conditions:

make_ini

4. You can look at your generated input files in CROCO_FILES directory: You should have:

croco_grd.nc
croco_ini.nc
croco_blk.nc # or croco_frc.nc
croco_bry.nc # or croco_clm.nc

5. Summary to create a simple configuration from climatology files: In Matlab, execute the following:

start
make_grid
make_forcing
make_bulk
make_bry # or make_clim
make_ini

This will create:

croco_grd.nc
croco_frc.nc (or croco_blk.nc)
croco_bry.nc (or croco_clim.nc)
croco_ini.nc

254 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.7.4 Interannual pre-processing

Dedicated scripts for interannual pre-processing can be found for the different forcing datasets in:

Aforc_CFSR

Scripts for the recovery of surface forcing data (based
on CFSR reanalysis) for
interannual simulations

Aforc_ECMWF

Scripts for the recovery of surface forcing data (based
on ECMWF-ERAinterim simulations) for
interannual simulations

Aforc_ERA5

Scripts for the recovery of surface forcing data (based
on ECMWF-ERA5 simulations) for
interannual simulations

Aforc_NCEP

Scripts for the recovery of surface forcing data (based
on NCEP2 reanalysis) for
interannual simulations

Aforc_QuikSCAT Scripts for the recovery of wind stress from satellite
scatterometer data (QuickSCAT)

Forecast_tools Scripts for the generation of an operational oceanic
forecast system

Oforc_OGCM

Scripts for the recovery of initial and lateral boundary
conditions from global OGCMs
(SODA [Carton, 2005] or CMEMS/Mercator
[Lellouche et al., 2021]) for inter-annual simulations

1. Edit crocotools_param.m First section should already be set if you have completed the previous tutorial.

In the second section, check the path to forcing data directory

% 2 - Generic file and directory names

% Forcing data directory (ncep, quikscat, datasets download with opendap, etc..)
%
FORC_DATA_DIR = ['~/DATA/'];

In section 4, select only ini and bry (but no clim files, set: makeclim = 0;) to avoid too long pre-processing,
and as it is the most usual set up

% initial/boundary data options (1 = process)
% (used in make_clim, make_biol, make_bry,
% make_OGCM.m and make_OGCM_frcst.m)
%
makeini = 1; % initial data
makeclim = 0; % climatological data (for boundaries and nudging layers)
makebry = 1; @ % lateral boundary data

2.7. Regional: Preprocessing (Matlab) 255

Croco Documentation, Release 2.0.0

Edit section 6 for running January to March 2005

% 6 - Reference date and simulation times

Ymin = 2005; % first forcing year
Ymax = 2005; % last forcing year
Mmin = 1; % first forcing month
Mmax = 3; % last forcing month

Note: An important aspect is the definition of time and especially the choice of a time origin. The origin
of time Yorig should be kept the same for all the preprocessing and postprocessing steps.

Edit section 7 for using ERA5 and mercator forcing sets

% 7 - Parameters for Interannual forcing (SODA, mercator, CFSR, ERA5 ...)
%
%
Download_data = 1; % Get data from OPENDAP sites
level = 0; % AGRIF level; 0 = parent grid
%
% ...

% 1/1/1979 - 31/3/2011
makefrc = 0; % 1: create forcing files
makeblk = 1; % 1: create bulk files
QSCAT_blk = 0; % 1: a) correct NCEP frc/bulk files with

% u,v,wspd fields from daily QSCAT data
% b) download u,v,wspd in QSCAT frc file

add_tides = 0; % 1: add tides
add_waves = 0; % 1: add waves
% ...
%
%--
% Options for make_ERA5
%--
%
ERA5_dir = [FORC_DATA_DIR,'ERA5_',CROCO_config,'/']; % ERA5 data dir.␣
→˓[croco format]
My_ERA5_dir = [FORC_DATA_DIR,'ERA5_native_',CROCO_config,'/']; % ERA5 native␣
→˓data downloaded

% with python␣
→˓script

itolap_era5 = 2; % 2 records = 2␣
→˓hours
%
% ...
%
%--
% Options for make_OGCM_SODA or make_OGCM_mercator
%--
%
OGCM = 'mercator'; % Select OGCM: SODA or mercator
%
OGCM_dir = [FORC_DATA_DIR,OGCM,'_',CROCO_config,'/']; % OGCM data dir.␣
→˓[croco format]
%

(continues on next page)

256 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

bry_prefix = [CROCO_files_dir,'croco_bry_',OGCM,'_']; % generic boundary␣
→˓file name
clm_prefix = [CROCO_files_dir,'croco_clm_',OGCM,'_']; % generic climatology␣
→˓file name
ini_prefix = [CROCO_files_dir,'croco_ini_',OGCM,'_']; % generic initial file␣
→˓name
OGCM_prefix = [OGCM,'_']; % generic OGCM file␣
→˓name

mercator_type=1; % 1 --> 1/12 deg Mercator global reanalysis
% 2 --> 1/12 deg Mercator global analysis
% 3 --> 1/12 deg Mercator global forecast (See Section 8.)
% 4 --> 1/24 deg Mercator Mediterranean analysis/forecast␣

→˓(See Section 8.)
% 5 --> the same than 4 but with detiding␣

→˓postprocessing on current and ssh

% =============
% To download CMEMS data: set login/password (http://marine.copernicus.eu)
% and path to copernicusmarine executable
% see Oforc_OGCM/Copernicus_Marine_Toolbox_installation.md
%
% Various sets of data are proposed in the Copernicus web site
%
if strcmp(OGCM,'mercator')
%
pathCMC='/path/to/home/copernicusmarine'; % copernicusmarine client
%
user = 'XXXX';
password = 'XXXX';
%

2. Then you can run the Matlab pre-processing for these interannual forcing: You should already have you grid
set up. Otherwise, run make_grid

To build your ERA5 interannual atmospheric forcing, script are in Aforc_ERA5/. Details are available in
README_ERA5.txt. The download part used python script

To build your CMEMS/mercator interannual ocean forcing, the useful script is Oforc_OGCM/
make_OGCM_mercator.m. The download part used python script

Warning: As this pluri-month preprocessing can be longer and uses more CPU ressources, you may
need to submit it as a job. A few example scripts (for SODA and CFSR) are provided:

cp ~/croco/croco_tools/example_job_prepro_matlab.pbs .

Launch your pre-processing job

qsub example_job_prepro_matlab.pbs

3. Check your generated files in CROCO_FILES You should have

croco_blk_ERA5_Y????M?.nc
croco_bry_mercator_Y????M?.nc
croco_ini_mercator_Y????M?.nc

2.7. Regional: Preprocessing (Matlab) 257

Croco Documentation, Release 2.0.0

2.8 Compiling

The files that you need to edit for compilation are:

cppdefs.h

CPP-keys* allowing to select configuration,
numerical schemes, parameterizations,
forcing and boundary conditions
* CROCO extensively uses the C preprocessor (cpp)
during compilation to
replace code statements, insert files into the code,
and select relevant
parts of the code depending on its directives.

param.h

Grid settings: the values of the model grid size are:
LLm0 points in the X direction
MMm0 points in the Y direction
N vertical levels

For realistic regional cases, LLm0 and MMm0 are
given by running make_grid.m,
and N is defined in crocotools_param.m

param.h also contains: Parallelisation settings
Tides, Wetting-Drying, Point sources, Floats,
Stations specifications

jobcomp The compilation script (including settings for paths,
compilers, libraries, etc)

Warning: CROCO needs to be compiled for each configuration (domain, coupled, uncoupled, parameteriza-
tions. . .), i.e., each time you change something in cppdefs.h or param.h

Let’s explore, check, and edit the 3 aforementionned files:

2.8.1 cppdefs.h

Let’s explore, check, and edit: cppdefs.h

1. First section of cppdefs.h defines your configuration (test case or realistic regional case):

#undef BASIN /* Basin Example */
#undef CANYON /* Canyon Example */
#undef EQUATOR /* Equator Example */
#undef INNERSHELF /* Inner Shelf Example */
#undef RIVER /* River run-off Example */
#undef OVERFLOW /* Graviational/Overflow Example */
#undef SEAMOUNT /* Seamount Example */
#undef SHELFRONT /* Shelf Front Example */
#undef SOLITON /* Equatorial Rossby Wave Example */
#undef THACKER /* Thacker wetting-drying Example */
#undef UPWELLING /* Upwelling Example */

(continues on next page)

258 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

#undef VORTEX /* Baroclinic Vortex Example */
#undef INTERNAL /* Internal Tide Example */
#undef IGW /* COMODO Internal Tide Example */
#undef JET /* Baroclinic Jet Example */
#undef SHOREFACE /* Shoreface Test Case on a Planar Beach */
#undef RIP /* Rip Current Test Case */
#undef SANDBAR /* Bar-generating Flume Example */
#undef SWASH /* Swash Test Case on a Planar Beach */
#undef TANK /* Tank Example */
#undef ACOUSTIC /* Acoustic wave Example */
#undef GRAV_ADJ /* Graviational Adjustment Example */
#undef ISOLITON /* Internal Soliton Example */
#undef KH_INST /* Kelvin-Helmholtz Instability Example */
#undef TS_HADV_TEST /* Horizontal tracer advection Example */
#define REGIONAL /* REGIONAL Applications */

For the BENGUELA_LR case we are running, you should have:

#define REGIONAL /* REGIONAL Applications */

2. Then, in cppdefs.h, you have one section for each case. Let’s explore the REGIONAL case section:

• First is the name of your configuration:

#if defined REGIONAL
/*
!==
! REGIONAL (realistic) Configurations
!==
!
!----------------------
! BASIC OPTIONS
!----------------------
!
*/

/* Configuration Name */
define BENGUELA_LR

• Then, you can set parallelization option (you can set define MPI if you want to run in parallel)

/* Parallelization */
undef OPENMP
undef MPI

• Then, you can set I/O options (XIOS server, netcdf 4 parallel option, NB: we will have a dedicated
tutorial on XIOS)

/* I/O server */
undef XIOS

• Non-hydrostatic option

/* Non-hydrostatic option */
undef NBQ

• Nesting settings

2.8. Compiling 259

Croco Documentation, Release 2.0.0

/* Nesting */
undef AGRIF
undef AGRIF_2WAY

• Coupling with other models (atmosphere, waves)

/* OA and OW Coupling via OASIS (MPI) */
undef OA_COUPLING
undef OW_COUPLING

• Including wave-current interactions

/* Wave-current interactions */
undef MRL_WCI

• Managing open boundaries (you can choose to close one of the boundaries, useful in coastal cases)

/* Open Boundary Conditions */
undef TIDES
define OBC_EAST
define OBC_WEST
define OBC_NORTH
define OBC_SOUTH

• Activating applications

/* Applications */
undef BIOLOGY
undef FLOATS
undef STATIONS
undef PASSIVE_TRACER
undef SEDIMENT
undef BBL

• Defining a dedicated log file for CROCO standard output (default is undef but you can define
LOGFILE to facilitate the reading of model output, particularly useful for coupled simulations)

/* dedicated croco.log file */
undef LOGFILE

Warning: Keep undef LOGFILE is you use Plurimonth run scritps as: run_croco_inter.bash
because it already re-direct the CROCO output, and check it. . .

• Time reference setting:

Warning: By default no reference time is used, and time is referred to the beginning of the simu-
lation only

/* Calendar */
undef USE_CALENDAR

3. Then you have detailed settings (you can find a description of all cpp keys in Contents and Architecture
section of the Tutorials). Let’s just highlight a few ones:

• In grid configuration

260 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

/* Grid configuration */
define CURVGRID
define SPHERICAL
define MASKING
undef WET_DRY
define NEW_S_COORD

Warning: you should check that the vertical coordinate setting NEW_S_COORD is in adequation
with your pre-processing setting (vtransform=2 in crocotools_param.m)

• In surface forcing subsection:

– if you have prepared croco_frc.nc file (using make_frc.m)

/* Surface Forcing */
undef BULK_FLUX

– if you have prepared croco_blk.nc file (using make_blk.m)

/* Surface Forcing */
define BULK_FLUX

• Then, you have to set your lateral forcing according to your pre-processing as well:

– If you have prepared croco_clm.nc file (using make_clim.m)

/* Lateral Forcing */
define CLIMATOLOGY

and

undef FRC_BRY

– Or, if you have prepared croco_bry.nc file (using make_bry.m)

/* Lateral Forcing */
undef CLIMATOLOGY

and

define FRC_BRY

The other CPP-keys will be explored in other tutorials.

2.8.2 param.h

param.h is composed of the following sections:

• Dimensions of Physical Grid and array dimensions

• MPI related variables

• Number maximum of weights for the barotropic mode

• OA-Coupling, Tides, Wetting-Drying, Point sources, Floast, Stations

• Derived dimension parameters

• I/O : flag for type sigma vertical transformation

• Number of tracers

2.8. Compiling 261

Croco Documentation, Release 2.0.0

• Tracer identification indices

Most of the time you only need to check/edit the 2 first sections:

1. Check the grid settings:

elif defined BENGUELA_LR
parameter (LLm0=41, MMm0=42, N=32) ! BENGUELA_LR

• LLm0: Dimension (ghost points included) in the 𝜉 direction.

• MMm0: Dimension (ghost points included) in the 𝜂 direction.

• N: Number of 𝜌-vertical points, in the vertical grid.

2. Check and eventually edit the parallelization settings:

#ifdef MPI
integer NP_XI, NP_ETA, NNODES
parameter (NP_XI=1, NP_ETA=4, NNODES=NP_XI*NP_ETA)
parameter (NPP=1)
parameter (NSUB_X=1, NSUB_E=1)

#elif defined OPENMP
parameter (NPP=4)

• In the case of OpenMP parallelization, NPP is the number of cpu used in the computation

• In the case of MPI parallelization, it is equal to to NNODES.

• AUTOTILING (implemented by L. Debreu): cpp-key that enable to compute the optimum subdomains
partition in terms of computation time.

Note: MPI tiles should be at least 20x20 points.

2.8.3 jobcomp

Now that your input files are set up, you can proceed to compilation:

Here we assume that you have set a few environment variables for compilers and libraries. Here is an example
with Intel compilers and a netcdf library located in $HOME/softs/netcdf. Adapt these to your own settings (in your
.bashrc file):

compilers
export CC=icc
export FC=ifort
export F90=ifort
export F77=ifort
export MPIF90=mpiifort

netcdf library
export NETCDF=$HOME/softs/netcdf
export PATH=$NETCDF/bin:${PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${NETCDF}/lib

1. Edit the compilation script jobcomp:

set source, compilation and run directories
#
SOURCE=~/croco/croco/OCEAN
SCRDIR=./Compile

(continues on next page)

262 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

RUNDIR=`pwd`
ROOT_DIR=$SOURCE/..
#
determine operating system
#
OS=`uname`
echo "OPERATING SYSTEM IS: $OS"

#
compiler options
#
FC=$FC

#
set MPI directories if needed
#
MPIF90=$MPIF90
MPIDIR=$(dirname $(dirname $(which $MPIF90)))
MPILIB="-L$MPIDIR/lib -lmpi -limf -lm"
MPIINC="-I$MPIDIR/include"

set NETCDF directories
#
#---
Use :
#-lnetcdf : version netcdf-3.6.3 --
#-lnetcdff -lnetcdf : version netcdf-4.1.2 --
#-lnetcdff : version netcdf-fortran-4.2-gfortran --
#---
#
#NETCDFLIB="-L/usr/local/lib -lnetcdf"
#NETCDFINC="-I/usr/local/include"
NETCDFLIB=$(nf-config --flibs)
NETCDFINC=-I$(nf-config --includedir)

2. Compile the model:

./jobcomp > jobcomp.log

If compilation is successful, you should have a croco executable in your directory.

You will also find a Compile directory containing the model source files:

• .F files: original model source files that have been copied from ~/croco/croco/OCEAN

• _.f files: pre-compiled files in which only parts defined by cpp-keys are kept

• .o object files

2.8. Compiling 263

Croco Documentation, Release 2.0.0

2.8.4 Compilation options

A very summarized information on compilation options is given here. For further details, search information on
the web, or with your cluster assistance team. Useful informations can also be found on this page: http://www.
idris.fr/jean-zay/cpu/jean-zay-cpu-comp_options.html

• Optimization options:

– -O0, -O1, -O2, -O3, -fast : optimization level. -O0 is no optimization, use it for debug. -O3 and
-fast are more agressive optimization options that can lead to problems in reproducibility of your run
(especially it is better to avoid -fast).

– -xCORE-AVX2 : vectorization option, very agressive optimization => non-reproducibility of CROCO

– -fno-alias, -no-fma, -ip : other optimization options, commonly used

– -ftz: set to 0 denormal very small numbers. It is set by default with -O1, -O2, -O3 (can be a problem
in calculation precision)

• Debug options: -O0 -g -debug -fpe-all=0 -no-ftz -traceback -check all -fbacktrace
-fbounds-check -finit-real=nan -finit-integer=8888

• Precision and writing options:

– -fp-model precise: important to have good precision and reproducibility of your calculations

– -assume byterecl: way of writing: byte instead of bit

– -convert big_endian: way of writing binaries (important for avoiding huge negative numbers)

– -i4, -r8``: way of writing integers and reals (important also for reproducibility between different clus-
ters)

– -72: specifies that the statement field of each fixed-form source line ends at column 72.

– -mcmodel=medium -shared-intel : do not limit memory to 2Go for data (useful for writing large
output files)

2.8.5 Tips in case of errors during compilation

In case of strange errors during compilation (e.g. “catastrophic error: could not find . . . ”), try one of these solutions:

• check your home space is not full ;-)

• check your paths to compilers and libraries (especially Netcdf library)

• check that you have the good permissions, and check that your executable files (configure, make. . .) do are
executable

• check that your shell scripts headers are correct or add them if necessary (e.g. for bash: #!/bin/bash)

• try to exit/log out the machine, log in back, clean and restart compilation

Errors and tips related to netcdf library:

• with netcdf 4.3.3.1: need to add the following compilation flag for all models: -mt_mpi

The error associated to a missing -mt_mpi flag is of this type: “
/opt/intel//impi/4.1.1.036/intel64/lib/libmpi_mt.so.4: could not read symbols: Bad value “

• with netcdf 4.1.3: do NOT add -mt_mpi flag

• with netcdf4, need to place hdf5 library path in your environment:

export LD_LIBRARY_PATH=YOUR_HDF5_DIR/lib:$LD_LIBRARY_PATH

• with netcdf 4, if you use the library splitted in 2: C part and Fortran part, you need to place links to C library
before links to Fortran library and need to put both path in this same order in your LD_LIBRARY_PATH

264 Chapter 2. Tutorials

http://www.idris.fr/jean-zay/cpu/jean-zay-cpu-comp_options.html
http://www.idris.fr/jean-zay/cpu/jean-zay-cpu-comp_options.html

Croco Documentation, Release 2.0.0

In case of ‘segmentation fault’ error:

• try to allocate more memory with “unlimited -s unlimited”

• try to launch the compilation as a job (batch) with more allocated memory

2.9 Running the model

To run the model, you need to have completed pre-processing (for realistic cases) and compilation phases. In your
working directory you need to have:

• For an idealized simulation (e.g. test cases):

croco # model executable
croco.in # namelist file (available for each test case croco source directory:␣
→˓TEST_CASES)

• For a realistic simulation:

croco # model executable
croco.in # namelist file (available in croco source directory: OCEAN)

in CROCO_FILES:
croco_grd.nc # grid file
croco_bdy.nc or croco_clm.nc # lateral boundary condition file
croco_frc.nc or croco_blk.nc # surface forcing file
croco_ini.nc # initial condition file

2.9.1 Edit croco.in

You first need to set all time, I/O, and different parameters in the CROCO namelist file: croco.in.

CROCO namelist file croco.in is set by default for the BENGUELA_LR case. So you should have nothing to
change.

The detail of all croco.in sections can be found here: croco.in

However you can check some settings:

• Time stepping:

time_stepping: NTIMES dt[sec] NDTFAST NINFO
720 3600 60 1

NTIMES: number of time steps dt[sec]: baroclinic time step NDTFAST: number of barotropic time steps in
one baroclinic time step)

Note: Your time steps should be set according to the stability constraints:

– Barotropic mode
∆𝑡

∆𝑥

√︀
𝑔𝐻 ≤ 0.89

Note that considering an Arakawa C-grid divides the theoretical stability limit by a factor of 2.

So for instance for a maximum depth of 5000 m and a resolution of 30 km:

∆𝑡 ≤ 0.89∆𝑥

2.
√
𝑔𝐻

∆𝑡 ≤ 60𝑠

2.9. Running the model 265

Croco Documentation, Release 2.0.0

– 3D advection
With 60 barotropic time steps in one baroclinic time step, this results in a baroclinic time step of:

∆𝑡 ≤ 3600𝑠

You can check that this time step does not violate your CFL condition for your advection scheme.
Typical CFL values for with Croco time-stepping algorithm are

Advection scheme Max Courant number
C2 1.587
UP3 0.871
SPLINES 0.916
C4 1.15
UP5 0.89
C6 1.00

In the present BENGUELA_LR case, we use UP3:

∆𝑡

∆𝑥
.𝑉𝑚𝑎𝑥 ≤ 0.871

𝑉𝑚𝑎𝑥 ≤ 0.871
30000

3600
𝑉𝑚𝑎𝑥 ≤ 7.25𝑚/𝑠

which is a very large allowed maximum horizontal velocity.

• Vertical coordinate parameters:

Warning: These parameters should be set accordingly to pre-processing.

S-coord: THETA_S, THETA_B, Hc (m)
7.0d0 2.0d0 200.0d0

• By default no reference time is used, and time is referred to the beginning of the simulation only using
NTIMES. If you want to define the start and stop of the model by dates, you first need to edit cppdefs.h, define
this key, and recompile the model:

#define USE_CALENDAR

Then edit croco.in input file:

start_date:
2000-01-01 00:00:00

end_date:
2000-02-01 00:00:00

output_time_steps: DT_HIS(H), DT_AVG(H), DT_RST(H)
1.0 6 48

Warning: this replaces NTIMES definition which is implicitly calculated.

As we are running a climatological simulation, this is not very relevant (as the model is cycled on a idealized
360-days period). This is more useful for interannual simulations.

266 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

• Check the paths to your input files (they should be properly set by default):

grid: filename
CROCO_FILES/croco_grd.nc

forcing: filename
CROCO_FILES/croco_frc.nc

bulk_forcing: filename
CROCO_FILES/croco_blk.nc

climatology: filename
CROCO_FILES/croco_clm.nc

boundary: filename
CROCO_FILES/croco_bry.nc

• Indicate if you are starting from an initial or restart file and its path:

initial: NRREC filename
1

CROCO_FILES/croco_ini.nc

NRREC: Switch to indicate start or re-start from a previous solution. NRREC is the time index of the initial or
restart NetCDF file assigned for initialization.

– If NRREC=1 you are starting from an initial file.

– If NRREC=X with X a positive number, you are starting from the Xth time record in the restart
file.

– If NRREC is negative (say NRREC=-1), the model will start from the most recent time record. That is,
the initialization record is assigned internally.

• Indicate the frequency of restart files, and their paths:

restart: NRST, NRPFRST / filename
720 -1

CROCO_FILES/croco_rst.nc

NRST: frequency of restarts in number of time steps

NRPFRST=-1: overwrite old restarts at each restart time,

NRPFRST=0: store all restarts in one file,

NRPFRST=X with X a positive number: store X restarts in one file

• Indicate if you want history (e.g. instantaneous) and/or averaged output files, their output frequency, and
path:

history: LDEFHIS, NWRT, NRPFHIS / filename
T 72 0

CROCO_FILES/croco_his.nc
averages: NTSAVG, NAVG, NRPFAVG / filename

1 72 0
CROCO_FILES/croco_avg.nc

LDEFHIS: T or F: do you want history files

NWRT: frequency of output in number of time steps

NRPFHIS is the way outputs will be stored:

– NRPFHIS=-1: overwrite old history outputs at each output time,

– NRPFHIS=0: store all history outputs in one file,

– NRPFHIS=X with X a positive number: store X history outputs in one file

2.9. Running the model 267

Croco Documentation, Release 2.0.0

NTSAVG: starting time step for the accumulation of output time-averaged data

NAVG: frequency of averaged outputs in number of time steps

NRPFAVG: same as for history files

• Choose which variables to output (T or F flag):

primary_history_fields: zeta UBAR VBAR U V wrtT(1:NT)
T T T T T 30*T

auxiliary_history_fields: rho Omega W Akv Akt Aks Visc3d Diff3d HBL HBBL␣
→˓Bostr Wstr Ustr Vstr Shfl Swfl rsw rlw lat sen HEL

F F T F T F F F T T ␣
→˓T T T T T T 10*T
gls_history_fields: TKE GLS Lscale

T T T

primary_averages: zeta UBAR VBAR U V wrtT(1:NT)
T T T T T 30*T

auxiliary_averages: rho Omega W Akv Akt Aks Visc3d Diff3d HBL HBBL Bostr␣
→˓Wstr Ustr Vstr Shfl Swfl rsw rlw lat sen HEL

F T T F T F F F T T T T␣
→˓ T T T T 10*T
gls_averages: TKE GLS Lscale

T T T

Other parameters in croco.in file will be explored in the next tutorials.

2.9.2 Run the model

• To run the BENGUELA_LR simulation in serial mode (1 CPU), just do:

./croco croco.in

Where croco is your executable compiled with all your chosen options and parameterizations and croco.in
is your namelist file for croco.

• To run the BENGUELA_LR simulation in parallel (if you have compiled CROCO with #define MPI):

– By using classical launch command (on individual computers):

mpirun -np NPROCS croco croco.in

where NPROCS is the number of CPUs you want to allocate. mpirun -np NPROCS is a typical mpi com-
mand, but it may be adjusted to your MPI compiler and machine settings.

– OR by using a batch script (e.g. PBS) to launch the model (in clusters), examples are provided:

cp ~/croco/croco/SCRIPTS/example_job_croco_mpi.pbs .

Edit example_job_croco_mpi.pbs according to your MPI settings in param.h and to your machine
MPI command, and launch the run:

qsub example_job_croco_mpi.pbs

Warning: NPROCS needs to be consistent to what you indicated in param.h during compilation

• If your run is successful you should obtain the following files:

268 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

croco_rst.nc # restart file
croco_his.nc # instantaneous output file
croco_avg.nc # averaged output file
croco.log #if you have defined the LOGFILE key in cppdefs.h : # define LOGFILE

croco.log contains the standard output of your run (informations on your settings, input files, evolution of the
time stepping). croco.log is also useful when your run blows up to search for the error.

You can explore your model outputs (croco_his.nc, croco_avg.nc) using different frameworks (ncview, ferret, etc).
In the croco_tools, a matlab interface is offered to explore your data: croco_gui, as well as a Python interface
croco_pyvisu. These are explored in other tutorials.

• Have a quick look at the results:

ncview croco_his.nc

• Test: some questions:

– What is the size of the grid (see param.h)?

– What is the spatial resolution in both horizontal directions?

– How many vertical levels do you have?

– How are the vertical levels distributed (look for the cpp key NEW_SCOORD)?

– What are the initial dynamical conditions (see both cppdefs.h and croco.in)?

– What do the air-sea exchanges look like?

2.9.3 Tips in case of BLOW UP or ERROR

• Check your time steps

• Eventually increase NDTFAST and/or decrease the baroclinic time step

• Check the location of your boundaries (in particular if your blow up point is located close to them): it should
not be placed on a too strong topographic gradient, or coastline particular shape (it is usually better to have
a boundary normally crossing the coastline)

• Check the thickness and value of the sponge

2.10 Increasing the resolution: BENGUELA_VHR

Now that you have successfully run the default configuration, you can try running another configuration:
BENGUELA_VHR.

1. Create a new configuration directory for BENGUELA_VHR

2. As for the previous configuration, edit the paths in start.m and crocotools_param.m (or copy start.m
and crocotools_param.m from BENGUELA_LR)

3. Make the appropriate changes in crocotools_param.m to increase the resolution to 1/12°

4. Re-run preprocessing for this new configuration (grid, bulk, forcing, bry, ini)

5. Make the appropriate changes in cppdefs.h (define BENGUELA_VHR, MPI, BULK_FLUX, FRC_BRY, undef
CLIMATOLOGY), and param.h for running BENGUELA_VHR in parallel on 16 CPUs

6. As for the previous configuration, edit the paths in jobcomp (or copy jobcomp from BENGUELA_LR). And
re-compile the model

7. Make the appropriate changes in croco.in: change the time step!

8. As in the previous configuration, copy the batch job:

2.10. Increasing the resolution: BENGUELA_VHR 269

Croco Documentation, Release 2.0.0

cp ~/croco/croco/SCRIPTS/example_job_croco_mpi.pbs .

Edit it (notably change the number of CPUs used), and run the model:

qsub example_job_croco_mpi.pbs

9. Test questions:

• On how much CPUs could you run the model (max # of CPUs)?

2.11 Running with interannual forcing

2.11.1 Run after classical interannual pre-processing

Before running you should prepare your interannual inputs files following the Interannual Preprocessing tutorial.

To run a plurimonth simulation, we provide the following scripts in ~/croco/croco/SCRIPTS/
Plurimonths_scripts:

• run_croco_inter.bash: Plurimonth run with interannual forcing

• run_croco.bash: Plurimonth run with climatological/cycling forcing. It is a simplified version of
run_croco_inter.bash which is not described below.

These scripts:

• get the grid, the forcing, the initial and the boundary files

• run the model for 1 month

• store the output files in a specific form: e.g. croco_avg_Y????M?.nc

• replace the initial file by the restart file (croco_rst.nc) which has been generated at the end of the month

• re-launch the model for next month

A dedicated namelist input file is also requested and provided ~/croco/croco/OCEAN/croco_inter.in

All these files are already copied to your configuration directory if you have used create_config.bash. Other-
wise, copy them from the source directory to your configuration directory.

1. Edit run_croco_inter.bash: Paths should already be correct.

#
Name used for the input files. For example croco_grd.nc
MODEL=croco

Scratch directory where the model is run
SCRATCHDIR=`pwd`/SCRATCH

Input directory where the croco_inter.in input file is located
INPUTDIR=`pwd`/CROCO_IN # prod architecture
#INPUTDIR=`pwd` # dev architecture

AGRIF input file which defines the position of child grids
AGRIF_FILE=AGRIF_FixedGrids.in

Directory where the croco input NetCDF files (croco_grd.nc, ...) are stored
MSSDIR=`pwd`/CROCO_FILES

Directory where the croco output and restart NetCDF files (croco_his.nc, ...)␣
→˓are stored

(continues on next page)

270 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

MSSOUT=$SCRATCHDIR

CROCO executable
CODFILE=./croco

Warning: check INPUTDIR depending on the architecture you choosed (prod or dev architecture)

Number of MPI CPUs and command for running

number of processors for MPI run
NBPROCS=4

command for running the mode : ./ for sequential job, mpirun -np NBPROCS for␣
→˓mpi run
RUNCMD="mpirun -np $NBPROCS"

Type of forcings

Define which type of inputs are used
#
BULK_FILES=1
FORCING_FILES=0
CLIMATOLOGY_FILES=0
BOUNDARY_FILES=1
RUNOFF_FILES=0

Names of forcings

Atmospheric surface forcing dataset used for the bulk formula (NCEP)
ATMOS_BULK=ERA5
Atmospheric surface forcing dataset used for the wind stress (NCEP, QSCAT)
ATMOS_FRC=QSCAT
Oceanic boundary and initial dataset (SODA, ECCO,...)
OGCM=SODA
Runoff dataset (Daie and Trenberth,...)
RUNOFF_DAT=DAI

Time step settings

Model time step [seconds]
DT=3600
Number of barotropic time steps within one baroclinic time step [number],␣
→˓NDTFAST in croco.in
NFAST=60

Agrif nesting settings

Number total of grid levels (1: No child grid)
NLEVEL=1
AGRIF nesting refinement coefficient
AGRIF_REF=3

Dates settings (according to crocotools_param.m)

Start and End year
NY_START=2005

(continues on next page)

2.11. Running with interannual forcing 271

Croco Documentation, Release 2.0.0

(continued from previous page)

NY_END=2005
Start and End month
NM_START=1
NM_END=3
Set month format at 1 or 2 digits (for input and output files): "%01d" = 1␣
→˓digit/ "%02d" = 2 digit
MTH_FORMAT="%02d"
Time Schedule - TIME_SCHED=0 --> yearly files
TIME_SCHED=1 --> monthly files
TIME_SCHED=1

Number of year that are considered to be part of the spin-up (i.e. 365 days␣
→˓per year)
NY_SPIN=0

Outputs settings

Output frequency [days]
average
ND_AVG=3
history (if = -1 set equal to NUMTIMES)
ND_HIS=-1
restart (if = -1 set equal to NUMTIMES)
ND_RST=-1

Restart settings

Restart file - RSTFLAG=0 --> No Restart
RSTFLAG=1 --> Restart
RSTFLAG=0
Exact restart - EXACT_RST=0 --> Exact restart OFF
- EXACT_RST=1 --> Exact restart ON
EXACT_RST=0

2. Launch the simulation Copy the adequate job script

cp ~/croco/croco/SCRIPTS/example_job_run_croco_inter.pbs .

Check the MPI settings and launch the job

qsub example_job_run_croco_inter.pbs

3. Check at your outputs: You should have

croco_his_Y2000M1.nc
croco_his_Y2000M2.nc
croco_his_Y2000M3.nc
croco_avg_Y2000M1.nc
croco_avg_Y2000M2.nc
croco_avg_Y2000M3.nc
croco_rst.nc

Warning: If you have an error while you run did not BLOW UP, maybe it is because you have define
LOGFILE in your cppdefs.h. For using run_croco_inter.in it should be undef.

272 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.11.2 Alternative method: online interpolation of atmospheric bulk forcing

Instead of pre-processing your atmospheric bulk forcing, you can use online interpolation of atmospheric bulk
forcing.

To do so:

1. Your atmospheric files need to be in a format readable by CROCO: At the moment the following forcing are
implemented for online interpolation:

• CFSR data pre-formatted using the script Process_CFSR_files_for_CROCO.sh available in
croco_tools

• ERAI data pre-formatted using reformat_ECMWF.m (used in make_ECMWF.m in the croco_tools)

• AROME data formatted in Meteo France framework

Warning: we need to make the pre-formatting scripts available somewhere in croco_tools

2. Edit cppdefs.h In Surface forcing section

define ONLINE
ifdef ONLINE
undef AROME
undef ERA_ECMWF
endif

Note: for ONLINE interpolation, default is CFSR format. AROME and ERA_ECMWF are also available by
defining the cpp-keys.

3. Re-compile the model First copy your old executable to keep it, then re-compile

cp croco croco.bck
./jobcomp > jobcomp.log.online

4. Link or copy the CFSR files to your DATA directory

mkdir DATA/CFSR_Benguela_LR/
#ln -s ~/DATA/METEOROLOGICAL_FORCINGS/CFSR/BENGUELA/CROCO_format/*2005*.nc DATA/
→˓CFSR_Benguela_LR/.
cp ~/DATA/METEOROLOGICAL_FORCINGS/CFSR/BENGUELA/CROCO_format/*2005*.nc DATA/CFSR_
→˓Benguela_LR/.

5. Check and eventually edit croco_inter.in last section

online: byear bmonth recordsperday byearend bmonthend / data path
NYONLINE NMONLINE 4 2011 3

../DATA/CFSR_Benguela_LR/

6. Re-run the model

qsub example_job_run_croco_inter.sh

Note: In case of errors while using ONLINE, it is probably associated to time issues: check the time in
your CFSR input files, and check your time origin Yorig.

2.11. Running with interannual forcing 273

Croco Documentation, Release 2.0.0

2.12 Running forecasts

With the method described by Marchesiello et al. [2008], CROCO can be used to downscale global forecasts
in order to provide higher resolution forecasting. To do so, It is advised to start from building a regional con-
figuration following the dedicated tutorials and testing it with climatological or interannual forcing after editing
crocotools_param.m, croco.in, cppdefs.h, param.h. Then, specifically for the forecast system, you will
need to set the forecast parameters in crocotools_param.m, define cpp key ROBUST_DIAG in cppdefs.h and re-
compile the model using jobcomp, then edit croco_forecast.in. Finally, run the script run_croco_forecast.
bash that will download global forecast (ocean and atmosphere), create specific forcing files using the Fore-
cast_tools Matlab package, then run croco for the current period.

2.12.1 Strategy of Forecast_tools

CROCO_TOOLS allows running both inter-annual and real-time simulations. In the latter case, we rely on op-
erational global ocean circulation models for the initial and lateral boundary conditions and operational global
atmospheric models (introduced through bulk formulations) for surface forcing. In order to limit the volume of
data transferred over the Internet, we use OPeNDAP (Matlab) or the Copernicus Marine Service Toolbox (Python)
and extract only the necessary subgrid. We use the U.S. NCEP/NOAA data base for atmospheric forcing and the
European CMEMS data for oceanic forcing.

In a regional domain with low intrinsic variability where the circulation is directly forced by surface fluxes (away
from fronts and eddies), initialization is of lower importance. However, if oceanic intrinsic variability with low
predictability is dominant (e.g., mesoscale eddies with monthly time-scale), the model may well provide a statis-
tically reliable image of the eddy field, but out of phase at any given time. An initialization method is therefore
needed to bring ocean fields into phase with real time. Here, we do not perform data assimilation, but rely on
the global CMEMS forecast products, which assimilates satellite altimetry and in-situ data. Newtonian nudging is
used to adjust CMEMS data to CROCO dynamics in a downscaling procedure.

The strategy for a hindcast/forecast cycle is as follows. The simulation starts at t0-hdays (hdays=1, t0 being the
present time) and ends at t0+fdays (fdays=3). The model is run using interpolated data from CMEMS for lateral
boundary conditions and NCEP for surface forcing. CMEMS data or a CROCO restart file (from a previous fore-
cast) is used for initialization at t0-1, while nudging assimilates CMEMS data in the interior domain (with a nudging
time-scale of about 10 days). A Shell script (run_croco_forecast.bash) manages the whole procedure: download
and pre-processing, forecast simulations, post-processing (plot_forecast_croco.m), data storage and preparation of
the next forecast cycle.

2.12.2 Set forecast parameters

1. Edit crocotools_param.m

In section 7 Make sure that OGCM=mercator and set your login/password (http://marine.copernicus.eu) to
access CMEMS data through the python Copernicus Marine Service Toolbox in Forecast_tools directory.

%%%
%
% 8 - Parameters for the forecast system
%
% --> select OGCM name above (mercator ...)
% --> select Aforc name (GFS)
% --> don't forget to define in cppdefs.h:
% - ROBUST_DIAG
% - CLIMATOLOGY
% - BULK_FLUX
% - TIDES if you choose so, but without TIDERAMP
%%%
%
FRCST_dir = [FORC_DATA_DIR,'Forecast/']; % path to local OGCM data directory

(continues on next page)

274 Chapter 2. Tutorials

http://marine.copernicus.eu

Croco Documentation, Release 2.0.0

(continued from previous page)

%
%
% Number of hindcast / forecast days
%
hdays=1;
fdays=3;
%
% Local time= UTC + timezone
%
timezone = +2;
%
% Add tides
%
add_tides_fcst = 1; % 1: add tides
%
% MERCATOR cases (See Section 7):
% =============
%
if strcmp(OGCM,'mercator')

if mercator_type==3
% ========================
% 3 -> For Global Forecast PSY4
% ========================
product_id={'cmems_mod_glo_phy_anfc_0.083deg_P1D-m' ...

'cmems_mod_glo_phy-cur_anfc_0.083deg_P1D-m', ...
'cmems_mod_glo_phy-thetao_anfc_0.083deg_P1D-m', ...
'cmems_mod_glo_phy-so_anfc_0.083deg_P1D-m'};

%
elseif mercator_type==4

% ========================
% 4 -> For Mediterannean Forecast PSY4 4.2km
% ========================
product_id={'cmems_mod_med_phy-ssh_anfc_4.2km_P1D-m', ...

'cmems_mod_med_phy-cur_anfc_4.2km_P1D-m', ...
'cmems_mod_med_phy-tem_anfc_4.2km_P1D-m', ...
'cmems_mod_med_phy-sal_anfc_4.2km_P1D-m'};

%
elseif mercator_type==5

% ========================
% 5 -> For Mediterannean Forecast PSY4 4.2km (ssh detided)
% ========================
product_id={'cmems_mod_med_phy-ssh_anfc_detided_4.2km_P1D-m', ...

'cmems_mod_med_phy-cur_anfc_4.2km_P1D-m', ...
'cmems_mod_med_phy-tem_anfc_4.2km_P1D-m', ...
'cmems_mod_med_phy-sal_anfc_4.2km_P1D-m'};

%
else
end

end

Make sure that OGCM=mercator (section 7), choose the hindcast/forecast period hdays/fdays (start with
default), set your time zone and then your login/password (http://marine.copernicus.eu) to access CMEMS
data through motuclient python package in Forecast_tools directory.

2.12. Running forecasts 275

http://marine.copernicus.eu

Croco Documentation, Release 2.0.0

Warning: CMEMS url and files may sometimes change name, resulting in system failure until we make
the necessary adjustments.

2. Edit croco_forecast.in if you want to adjust some default parameters like nudging coefficient to forecast
data (by default on the order of 15 days)

nudg_cof: TauT_in, TauT_out, TauM_in, TauM_out [days for all]
1. 15. 1. 15.

Warning: croco_forecast.in contains template variables for NTIMES, DT, NDTFAST,
NRST,NWRT and NAVG

2.12.3 Compiling

1. Edit cppdefs.h for defining forcing and nudging procedures:

define BULK_FLUX

/* Lateral Forcing */
define CLIMATOLOGY
ifdef CLIMATOLOGY
define ZCLIMATOLOGY
define M2CLIMATOLOGY
define M3CLIMATOLOGY
define TCLIMATOLOGY

define ZNUDGING
define M2NUDGING
define M3NUDGING
define TNUDGING
define ROBUST_DIAG
endif

ROBUST_DIAG sets non-zero nudging coefficients tauT_out for nudging to CMEMS forecast (T,S) data.

2. Re-compile the model:

./jobcomp > jobcomp_forecast.log

2.12.4 Running the script

1. Copy run_croco_forecast.bash from SCRIPTS/Plurimonths_scripts to local directory.

2. Edit run_croco_forecasts.bash.

Check in particular the locations of matlab executable and loaddap library (used to extract NCEP atmospheric
forecast data)

export TOOLSDIR=$HOME/croco/croco_tools/Forecast_tools
export RUNDIR=${PWD}
export MATLAB=/usr/local/bin/matlab
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/loaddap-3.5.2/lib

Check the forecast cycle options (default choice is generally fine but you may want to set RESTART=1 after
the first forecast cycle)

276 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

Clean results of previous forecasts
#
export CLEAN=0
#
Get forcing files from DODS SERVER and process them for CROCO
PRE_PROCESS=1 ==> do the work (0 otherwise)
#
export PRE_PROCESS=1
#
Restart from previous forecast
#
export RESTART=0
#
Run hindcast/forecast
#
export RUN=1
#
#
Make a few plots
export PLOT=1
#
#===
Define time parameters (it will modify croco_forecast.in)
#===
#
Model time step [seconds]
DT=3600
Number of barotropic time steps within one baroclinic time step [number]
NDTFAST in croco.in
NFAST=60
Hindcast depth [days] see crocotools_param (hdays/fdays)
NDAYS_HIND=1
Forecast depth [days]
NDAYS_FCST=3
Output frequency [hours]
average
ND_AVG=24
history (if = -1 set equal to NUMTIMES)
ND_HIS=6
restart (if = -1 set equal to NUMTIMES)
ND_RST=24

3. Run the script (from Terminal or from Crontab)

./run_croco_forecast.bash

2.12. Running forecasts 277

Croco Documentation, Release 2.0.0

2.13 Nesting Tutorial

Nesting is performed in the model through the AGRIF library.

To create a nested configuration:

1. First build the parent domain configuration as in previous section

2. Then in matlab, you need to use the nestgui utility

nestgui

The nestgui will appear :

Fig. 1: Entrance window of nestgui

3. First choose the grid file of your parent domain: CROCO_FILES/croco_grd.nc.

4. Click 1. Define child and create the child domain on the main window. The size of the grid child
(Lchild and Mchild) is now visible. This operation can be redone until you are satisfied with the size and
the position of the child domain. The child domain can be finely tuned using the imin, imax, jmin and
jmax boxes.

Warning: Be aware that the mask interpolation from the parent grid to the child grid is not optimal close
to corners. Parent/Child boundaries should be placed where the mask is showing a straight coastline. A
warning will be given during the interpolation procedure if this is not the case.

5. (If you want to change the topography input file for the child domain, click new child topo, choose your
new input topo file and edit n-band which is the number of grid points on which you will connect the parent
and child topography)

278 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

Fig. 2: Main window of nestgui

Click 2. Interp child to create the child grid. It generates the child grid file. Before, you should select if
you are using a new topography (New child topo button) for the child grid or if you are just interpolating
the parent topography on the child grid. In the first case, you should defines what topography file will be used
(e.g. ~/Roms_tools/Topo/etopo2.nc or another dataset). You should also define if you want the volume of
the child grid to match the volume of the parent close to the parent/child boundaries (Match volume button,
it should be “on” by default). You should also define the r-factor [Beckmann and Haidvogel, 1993] for
topography smoothing (“r-factor”, 0.25 is safe) and the number of points to connect the child topography to
the parent topography (n-band, it follows the relation hnew = 𝛼. hnew + (1 - 𝛼).hparent , where 𝛼 is going
from 0 to 1 in “n-band” points from the parent/child boundaries). You should also select the child minimum
depth (Hmin, it should be lower or equal to the parent minimum depth), the maximum depth at the coast
(Hmax coast), the number of selective hanning filter passes for the deep regions (n filter deep” and
the number of final hanning filter passes (n filter final).

6. Click 3. Interp forcing or 3. Interp bulk to interpolate the forcing or bulk file on the child grid.
It interpolates the parent surface forcing on the child grid. Select the parent forcing file to be interpolated
(e.g. Run_BENGUELA_LR/CROCO_FILES/croco_frc.nc). The child forcing file croco_frc.nc.1 will
be created. The parent surface fluxes are interpolated on the child grid. You can use Interp bulk if
you are using a bulk formula. In this case, the parent bulk file (e.g. Run_BENGUELA_LR/CROCO_FILES/
croco_blk.nc) will be interpolated on the child grid.

(If you have changed the topography, Click Vertical interpolations)

7. Click 4. Interp initial or Interp restart to create initial or restart file. It interpolates parent ini-
tial conditions on the child grid. Select the parent initial file (e.g. Run_BENGUELA_LR/CROCO_FILES/
croco_ini.nc). The child initial file croco_ini.nc.1 will be created. If the topographies are different
between the parent and the child grids, the child initial conditions are vertically re-interpolated. In this case
you should check if the options vertical corrections and extrapolations are selected. It is prefer-
able to always use these options. If there are parent biological fields in the initial files, they can be processed
automatically, we have to define the type of biological models: either NChlPZD or N2ChlPZD2, then click

2.13. Nesting Tutorial 279

Croco Documentation, Release 2.0.0

on the Biol button, either BioEBUS, then click on the Bioebus, either PISCES biogeochemical model,
then click on the Pisces button. The fields needed for the initialization of these biological model will be
processed. For information, in the case of NPZD-type (NChlPZD or N2ChlPZD2) model, there are 5 addi-
tional fields, in the case of BIOEBUS, there are 8 additional fields and in the case of PISCES biogeochemical
model, there is 8 more fields.

8. Click 5. Create croco.in to create croco.in file for child domain

9. Click Create AGRIF_FixedGrids.in to create input file for AGRIF

Note: Interp clim button can be used to create a climatology file (i.e. boundary conditions) for the child
to domain, to test the child domain alone or to compare 1-way online nested run and offline nested run.

10. This will create:

CROCO_FILES/croco_grd.nc.1
CROCO_FILES/croco_frc.nc.1 (or croco_blk.nc.1)
CROCO_FILES/croco_ini.nc.1
croco.in.1
AGRIF_FixedGrids.in

11. Once the input files had been build, you need to compile the model in nesting mode. You need to define
AGRIF in cppdefs.h and re-compile.

12. You will then be able to launch croco as usual. It will run as an individual binary, with an internal loop on
the number of grids. The child grid will use the *.1 files, this suffix will also be added to the output file of
the nest. You can also define more than one child grid.

qsub job_croco_mpi.pbs

2.14 Adding Rivers

If you want to include rivers in your simulation domain, there are several variables to define as:

• the number of rivers: Nsrc

• the position of the rivers on the model grid: Isrc and Jsrc
• the zonal or meridional axis of the river flow: Dsrc
• if flow (and concentration) is constant, the flow rate of the river (in m3/s): Qbar (positive or negative)

• if flow (and concentration) is variable, and read from a netCDF file, the direction of the flow qbardir:

– 1 for west-east / south-north

– -1 for east-west / north-south

• the type of tracer advected by the river: Lsrc
• the value/concentration: Tsrc

280 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.14.1 Constant flow and concentration

For this you need to define the cpp-keys in cppdefs.h

#define PSOURCE

And re-compile.

Then in the croco.in file

psource: Nsrc Isrc Jsrc Dsrc Qbar [m3/s] Lsrc Tsrc
2

3 54 1 200. T T 20. 15.
3 40 0 200. T T 20. 15.

where Nsrc=2 is the number of rivers processed, then each line describes a river. Let’s describe the parameter for
river #1:

• Isrc=3, Jsrc=54 are the i, j indices where the river is positioned

• Dsrc=1 indicates the orientation (here meridional => along V direction)

• 200 is the runoff flow value in m3/s, oriented to the east

• T T are true/false indications for reading or not the following variables (here temperature and salinity)

• 20 and 15 are respectively the temperature and salinity of the river. You can edit these parameters.

Warning: The sources points must be placed on U or V points on the C-grid and not on rho-points

You can then run the model:

qsub job_croco_mpi.pbs

2.14.2 Variable flow read in a netCDF file and constant concentration

Instead of using a constant flow, you can use variable flow. For that you need read it from a netcdf file. First define
the dedicated cpp-key in cppdefs.h

#define PSOURCE_NCFILE

And re-compile the model.

Then you also need to prepare the netcdf river runoff input file.

For that, you can use in CROCO_TOOLS make_runoff (Rivers/make_runoff.m) which detect the main rivers
located in your domain (from RUNOFF_DAI runoff climatology).

Note: RUNOFF_DAI is a global monthly runoff climatology containing the 925 first rivers over the world, from
Dai and Trenberth, 2000

After asking you some specifications for each detected river in your domain, for the selected rivers:

• It will compute the right location on the croco_grid regarding the direction and orientation you defined

• It will create the river forcing netCDF file croco_runoff.nc containing the various river flow time series.

To do so, in CROCO_TOOLS, edit make_runoff.m and define the following flags:

2.14. Adding Rivers 281

Croco Documentation, Release 2.0.0

%% Choose the monthly runoff forcing time and cycle in days

clim_run=1

% - times and cycles for runoff conditions:
% - clim_run = 1 % climato forcing experiments with climato calendar
% qbar_time=[15:30:365];
% qbar_cycle=360;
%
% - clim_run = 0 % interanual forcing experiments with real calendar
% qbar_time=[15.2188:30.4375:350.0313];
% qbar_cycle=365.25;

psource_ncfile_ts=0;

% - psource_ncfile_ts = 0 => Constant analytical runoff tracers concentration␣
→˓no processing
% It reads analytical values in croco.in
% or use default value defined in
% analytical.F

For the BENGUELA test case, you will have 2 rivers detected, Orange and Doring. We recommend to define
them as zonal (0) and oriented from east to west (-1). It will give you the lines to enter in the croco.in file in the
psource_ncfile section.

psource_ncfile: Nsrc Isrc Jsrc Dsrc qbardir Lsrc Tsrc runoff file name
CROCO_FILES/croco_runoff.nc

2
25 34 0 -1 30*T 20 15
31 19 0 -1 30*T 20 15

where Nsrc=2 is the number of rivers, then each line describe a river. Let’s describe the parameter for the river #1

• Isr=25, Jsrc=34 are the i, j indices where the river is positioned

• Dsrc=0 indicates the orientation (here zonal)

• qsbardir= -1 indicates the direction (here towards the west)

• Lstrc=30*T are true/false flags for reading or not the following variables (here temperature and salinity)

• Tsrc=20 15 are respectively the temperature and salinity of the river.

You can edit these parameters.

Temperature and salinity can also be variable and read from a netCDF file, it is described in the next section.

2.14.3 Variable flow and variable concentration from a netCDF file

To run CROCO with a variable concentration of river tracers, you need to define the following cpp-key in cppdefs.h

#define PSOURCE_NCFILE_TS

You also need to prepare your netcdf input file. Using the CROCO_TOOLS: edit make_runoff.m and change the
following flags:

psource_ncfile_ts=1;

if psource_ncfile_ts
psource_ncfile_ts_auto=1 ;

(continues on next page)

282 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

Fig. 3: First and final guess rivers positions

Fig. 4: Rivers flow seasonal cycle

2.14. Adding Rivers 283

Croco Documentation, Release 2.0.0

(continued from previous page)

psource_ncfile_ts_manual=0;
end

% - pource_ncfile_ts = 1 => Variable runoff tracers
% concentration processing is activated.
%
% In this case, either choose:
% - psource_ts_auto : auto definition
% using the nearest point in the climatology
% file croco_clm.nc to fill the tracer
% concentration time serie in croco_runoff.nc
%
% - psource_ts_manual : manually definition the
% variable tracer concentration to fill
% the tracer concentration time serie in
% croco_runoff.nc

After asking you some specifications of each detected river in your domain, for the selected rivers, in addition to
river flow as in previous section, it will also put the tracers concentration (temp,salt, no3, et . . .) time series into
the river forcing netCDF file croco_runoff.nc

psource_ncfile: Nsrc Isrc Jsrc Dsrc qbardir Lsrc Tsrc runoff file name
CROCO_FILES/croco_runoff.nc

2
25 34 0 -1 30*T 16.0387 25.0368
30 19 0 -1 30*T 16.1390 25.1136

You also can edit these parameters.

Warning: The Tsrc value reported in croco.in are the annual-mean tracer values, the are just for information.
The real tracer concentration (Tsrc) are read in the runoff netCDF file created.

Fig. 5: Rivers tracer concentration seasonal cycle

284 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.14.4 Using a nest

The above procedure can be applied to a nested grid. For this, edit make_runoff and change the gridlevel
variable to the adhoc grid level.

%Choose the grid level into which you ant to set up the runoffs
gridlevel=1
if (gridlevel == 0)
% -> Parent / zoom #O
grdname = [CROCO_files_dir,'croco_grd.nc'];
rivname = [CROCO_files_dir,'croco_runoff.nc']
clmname = [CROCO_files_dir,'croco_clm.nc']; % <- climato file for runoff

else
% -> Child / zoom #XX
grdname = [CROCO_files_dir,'croco_grd.nc.',num2str(gridlevel)];
rivname = [CROCO_files_dir,'croco_runoff.nc.',num2str(gridlevel)];
clmname = [CROCO_files_dir,'croco_clm.nc.',num2str(gridlevel)]; % <- climato file␣

→˓for runoff
end

and run make_runoff again to generate

croco_runoff.nc.1

Note: The runoff has a default vertical profile defined in CROCO as an exponential vertical distribution of velocity.
It is in analytical.F, subroutine ana_psource if you need to change it.

2.15 Adding tides

Using the method described by Flather and Davies [1976], CROCO is able to propagate the different tidal con-
stituents from its lateral boundaries.

To do so, you will need to add the tidal components to the forcing file, and define the following cpp keys TIDES,
SSH_TIDES and UV_TIDES and recompile the model using jobcomp. To work correctly, the model should use the
characteristic method open boundary radiation scheme (cpp key OBC_M2CHARACT defined).

Warning: To get a clean signal you need to provide harmonic components from both tide elevation and
tide velocity. In case you don’t have velocity harmonics (not defined UV_TIDES) a set of reduced equation is
available to compute velocity from SSH (OBC_REDUCED_PHYSICS)

2.15.1 Pre-processing (Matlab)

1. Edit crocotools_param.m section 5

%%%%%%%%%%%%%%%%%%%%%
%
% 5-Parameters for tidal forcing
%
%%%%%%%%%%%%%%%%%%%%%
%
% TPXO file name (TPXO7)
%

(continues on next page)

2.15. Adding tides 285

Croco Documentation, Release 2.0.0

(continued from previous page)

tidename=[CROCOTOOLS_dir,'TPXO7/TPXO7.nc'];
%
% Number of tides component to process
%
Ntides=10;
%
% Chose order from the rank in the TPXO file :
% "M2 S2 N2 K2 K1 O1 P1 Q1 Mf Mm"
% " 1 2 3 4 5 6 7 8 9 10"
%
tidalrank=[1 2 3 4 5 6 7 8 9 10];
%
% Compare with tidegauge observations
%
lon0=18.37;
lat0=-33.91; % Cape Town location
Z0=1; % Mean depth of the tidegauge in Cape Town

2. Launch pre-processing of tides in Matlab:

start
make_tides

3. Check your croco_frc.nc file

2.15.2 Compiling

1. Edit cppdefs.h for defining tides:

/* Open Boundary Conditions */
define TIDES

/* Open Boundary Conditions */
ifdef TIDES
define SSH_TIDES
define UV_TIDES
define POT_TIDES
undef TIDES_MAS
ifndef UV_TIDES
define OBC_REDUCED_PHYSICS
endif
define TIDERAMP
endif
define OBC_M2CHARACT
undef OBC_M2ORLANSKI
define OBC_M3ORLANSKI
define OBC_TORLANSKI
undef OBC_M2SPECIFIED
undef OBC_M3SPECIFIED
undef OBC_TSPECIFIED

2. Check/Edit param.h:

#if defined SSH_TIDES || defined UV_TIDES
integer Ntides ! Number of tides

! ====== == =====
(continues on next page)

286 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

if defined IGW || defined S2DV
parameter (Ntides=1)

else
parameter (Ntides=10)

endif
#endif

Warning: The number of tide components must be coherent with the one defined in
crocotools_param.m

3. Re-compile the model:

./jobcomp > jobcomp_tide.log

2.15.3 Running

Run the model

qsub job_croco_mpi.pbs

2.16 Visualization (Matlab)

The croco_gui utility has been developped under Matlab software to visualize CROCO outputs.

In Matlab

start
croco_gui

A window pops up, asking for a CROCO history NetCDF file (see screen captions below). You should select
croco_his.nc (history file) or croco_avg.nc (average file) and click “open”.

2.16. Visualization (Matlab) 287

Croco Documentation, Release 2.0.0

The main window appears, variables can be selected to obtain an image such as Figure below. On the left side, the
upper box gives the available CROCO variable names and the lower box presents the variables derived from the
CROCO model outputs :

• Ke : Horizontal slice of kinetic energy

• Rho : Horizontal slice of density using the non-linear equation of state for seawater of Jackett and McDougall
(1995)

• Pot_Rho : Horizontal slice of the potential density

• Bvf : Horizontal slice of the Brunt-Väisäla frequency

• Vort : Horizontal slice of vorticity

• Pot_vort : Horizontal slice of the vertical component of Ertel’s potential vorticity. In our case, 𝜆 = 𝜌

• Psi : Horizontal slice of stream function. This routine might be costly since it inverses the Laplacian of the
vorticity (using a successive over relaxation solver)

• Speed : Horizontal slice of the ocean currents velocity

• Transport : Horizontal slice of the transport stream function

• Okubo : Horizontal slice of the Okubo-Weiss parameter

• Chla : Compute a chlorophyll-a from Large and Small phytoplankton concentrations

• z_SST_1C : Depth of 1°C below SST

• z_rho_1.25 : Depth of 1.25 kg/m^3 below surface density

• z_max_bvf : Depth of the maximum of the Brunt-Väisäla frequency

• z_max_dtdz : Depth of the maximum vertical temperature gradient

• z_20C : Depth of the 20°C isotherm

288 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

• z_15C : Depth of the 15°C isotherm

• z_sig27 : Depth of the 1027 kg/m^3 density layer

It is possible to add arrows for the horizontal currents by increasing the “Current vectors spatial step”. It is also
possible to obtain vertical sections, time series, vertical profiles and Hovmüller diagrams by clicking on the corre-
sponding targets in croco_gui.

2.17 Python tools for CROCO

As an alternative to the matlab pre- and post-processing tools for CROCO (croco_tools) developed over the last 20
years, a python toolbox is under development. All the features present in croco_tools matlab are not available in
this version.

These python tools bring together the methods of several users of the CROCO community but do not constitute a
definitive toolbox. A new, more complete toolbox is under development by the CROCO team.

The temporary croco_pytools toolbox consists of:

• *prepro*: a set of python routines, interface with fortran to process the grid and forcing files (initialization,
open-boundary conditions, tides forcing, rivers forcing)

• *croco_pyvisu*: a vizualisation GUI

• *xcroco*: for analysis based on xarray and xgcm

The documentation for this toolbox is available at: https://croco-ocean.gitlabpages.inria.fr/croco_pytools/

2.17. Python tools for CROCO 289

https://croco-ocean.gitlabpages.inria.fr/croco_pytools/

Croco Documentation, Release 2.0.0

2.18 NBQ Tutorial

CROCO-NBQ kernel solves the compressible and non-hydrostatic Navier-Stokes equations. This kernel can be
used to simulate complex nonlinear, nonhydrostatic physics in a realistic but computationally-affordable configu-
ration. Non-hydrostatic effects become important when the horizontal and vertical scales of motion are similar. In
oneanic models this typically arises with horizontal scales of the order of 1 km resolved with grid intervals of order
100 m. For motions of larger scale that are resolved with grid intervals of order 1 km, the hydrostatic approximation
is well satisfied.

Accurate simulation of nonhydrostatic effects requires to resolve very small horizontal scales. The explicit repre-
sentation of fine-scale turbulent processes requires a significant number of fundamental numerical choices, such as
adapted advective schemes, adaptaed parametrizations, adapted boundary conditions . . . In the sections you will
find some recommendations about the most adapted numerical schemes for Large-Eddy Simulations (LES).

2.18.1 Some important points about Large-Eddy Simulations (LES)

• Momentum and tracer advection schemes :
Many advection schemes are now implented in CROCO (i.e. section 4.3 of the model documentation) leading to
one recurrent question: which scheme is the most apropriate for my configuration? Unfortunately, no advection
scheme is perfect for all applications.

In eddy-resolving ocean simulations significant gradients due to detached eddies or upwelling can be found. More
particularly, in coastal eddy-resolving configurations, salinity may vary from river concentration to ocean concen-
tration within a few kilometres in horizontal leading to the formation of even more stronger gradients. In such
cases (if your solution has strong gradients, shocks or propagating fronts), it is recommend to use a total variation
bounded (4.3.6.5) or a monotonicity-preserving scheme (section 4.3.6.6).

An exemple of numerical artefacs related to the advection schemes: Gibbs phenomenon

Numerical experiments with non-monotonic scheme show artificial oscillations of the solution near regions of
sharp gradients (figure below).

Non-monotonic vertical advection schemes (Akima for TS, Spline for UV)

On the contrary, TVD and WENO5 schemes enable sharper shock predictions and as they preserve monotonicity
they do not generate spurious oscillations in the solution (figure below).

290 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

Monotonic or quasi-monotonic vertical advection schemes (WENO5 for TS, TVD for UVW)

Recommended advection schemes for LES :

CPP options of Momentum Advection

UV_HADV_WENO5 Activate 5th-order WENOZ quasi-monotone lateral advection scheme for UV
UV_VADV_WENO5 Activate 5th-order WENOZ quasi-monotone vertical advection scheme for UV
W_HADV_WENO5 Activate 5th-order WENOZ quasi-monotone lateral advection scheme for W (in NBQ

simulation)
W_VADV_WENO5 Activate 5th-order WENOZ quasi-monotone vertical advection scheme for W (in NBQ

simulation)

or

UV_HADV_TVD Activate Total Variation Diminushing lateral advection scheme for UV
UV_VADV_TVD Activate Total Variation Diminushing vertical advection scheme for UV
W_HADV_TVD Activate Total Variation Diminushing lateral advection scheme for W (in NBQ simulation)
W_VADV_TVD Activate Total Variation Diminushing vertical advection scheme for W (in NBQ simula-

tion)

CPP options of Tracer advection

TS_HADV_WENO5 Activate 5th-order WENOZ quasi-monotone lateral tracer advection scheme
TS_VADV_WENO5 Activate 5th-order WENOZ quasi-monotone vertical tracer advection scheme

• Turbulence schemes : MILES & LES approaches
In LES, direct transfer ends at the lowest scale resolved, and subgrid dissipation of energy is accomplished by
implicit mixing of advection schemes, as well as by explicit parametrization provided by turbulent closure schemes.
The choices of advection schemes and/or turbulent closure schemes are thus critical to represent correctly the
turbulent energy cascade.

Small scales tend to be more isotropic and homogeneous than the large ones, thus LES requires 3D turbulent
closure schemes. Two options of 3D turbulent closure schemes are available in CROCO : A generic two-equation
turbulence closure model called Generalized Length Scale (GLS) scheme & a Smagorinsky model (i.e. model
documentation). An alternative approach is monotonically integrated LES (MILES). In MILES, the dissipative
nature of monotonic advection schemes is exploited to provide an implicit model of turbulence.

Related CPP options (for users):

2.18. NBQ Tutorial 291

Croco Documentation, Release 2.0.0

GLS_MIX2017_3D Activate 3D Generic Length Scale scheme
UV_VIS_SMAGO_3D Activate 3D Smagorinsky SGS model

• Options of Bottom boundary layer
In coastal seas, the bottom mixed layers may occupy a considerable fraction of the water depth. In contrast, bottom
mixed layers in ocean bassins cover only a small portion of the total depth of several thousands of meters. Moreover
the strong dissipation of kinetic energy generated by the bed friction can be enhanced in shallow water. Hence the
parametrization of the bottom boundary layer dynamic is particularly imortant in coastal large eddy simulations.
Some new parametrization options are under development in CROCO to potentially improve the representation of
the bottom boundary layers.

BSTRESS_FAST allows solving the bottom friction term of the momentum equations at the fast time step (using
part of the code structure inherited from the Non-Boussinesq solver). It avoids reducing the slow-mode (baroclinic)
time step for cases with high bottom friction or/and high near bottom vertical resolution. This is not yet a default
option as it needs further evaluation in various configurations.

NBQ_FREESLIP imposes a free-slip boundary condition on the bottom (the normal component of the fluid velocity
field is set to zero at the bottom level but the tangential component is unrestricted). This is not a default option, by
default a no-slip condition is imposed on the bottom. Further evaluation in various configurations is needed.

Related CPP options (for users):

NBQ_FREESLIP Activate free-slip boundary condition on the bottom
BSTRESS_FAST solve the bottom friction term of the momentum equations at the fast time step

2.18.2 KH_INST Test Case

1. Create a configuration directory:

mkdir ~/CONFIGS/KH_INST

2. Copy the input files for compilation from croco sources:

cd ~/CONFIGS/KH_INST
cp ~/croco/croco/OCEAN/cppdefs.h .
cp ~/croco/croco/OCEAN/param.h .
cp ~/croco/croco/OCEAN/jobcomp .

3. Edit cppdefs.h for using KH_INST case

define KH_INST

undef REGIONAL

Explore the CPP options selected for KH_INST case and undef MPI

after #elif defined KH_INST
undef MPI

You can check the KH_INST settings in param.h.

4. Edit the compilation script jobcomp:

set source, compilation and run directories
#
SOURCE=~/croco/croco/OCEAN
SCRDIR=./Compile

(continues on next page)

292 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

RUNDIR=`pwd`
ROOT_DIR=$SOURCE/..
#
determine operating system
#
OS=`uname`
echo "OPERATING SYSTEM IS: $OS"

#
compiler options
#
FC=$FC

#
set MPI directories if needed
#
MPIF90=$MPIF90
MPIDIR=$(dirname $(dirname $(which $MPIF90)))
MPILIB="-L$MPIDIR/lib -lmpi -limf -lm"
MPIINC="-I$MPIDIR/include"

set NETCDF directories
#
#---
Use :
#-lnetcdf : version netcdf-3.6.3 --
#-lnetcdff -lnetcdf : version netcdf-4.1.2 --
#-lnetcdff : version netcdf-fortran-4.2-gfortran --
#---
#
#NETCDFLIB="-L/usr/local/lib -lnetcdf"
#NETCDFINC="-I/usr/local/include"
NETCDFLIB=$(nf-config --flibs)
NETCDFINC=-I$(nf-config --includedir)

5. Compile the model:

./jobcomp > jobcomp.log

If compilation is successful, you should have a croco executable in your directory.

You will also find a Compile directory containing the model source files:

• .F files: original model source files that have been copied from ~/croco/croco/OCEAN

• _.f files: pre-compiled files in which only parts defined by cpp-keys are kept

• .o object files

6. Copy the namelist input file for KH_INST case:

cp ~/croco/croco/TEST_CASES/croco.in.KH_INST croco.in

Eventually edit it.

7. Run the model:

./croco croco.in > croco.out

If your run is successful you should obtain the following files:

2.18. NBQ Tutorial 293

Croco Documentation, Release 2.0.0

khinst_rst.nc # restart file
khinst_his.nc # instantaneous output file

8. Have a look at the results:

ncview khinst_his.nc

9. Test: some questions:

• What is the impact of the relaxation of the non-hydrostatic hypothesis?

• What are the impacts of the advection schemes?

• What is the impact of adding a turbulent scheme?

2.18.3 Set up your own NBQ configuration

• In cppdefs.h you should activate

– NBQ : activate the non-Boussinesq and non-hydrostatic kernel

/* Non-Boussinesq */
define NBQ

• To set up adapted time steps to your NBQ configuration (dt & NDTFAST in croco.in file), you can activate
in cppdefs_dev.h

– DIAG_CFL : activate diagnostics of the CFL criteria

define DIAG_CFL

If DIAG_CFL is defined, at each NINFO during the run, CFL criteria are indicated in your output file
:

∗ INT_3DADV : Slow (baroclinic) mode CFL criterion. This parameter depends on your mesh grid
size and your ocean current intensity (time-varying diagnostic). It should be inferior to approxi-
mately 1 (depending on the advection scheme, i.e. section 4.2.5).

∗ EXT_GWAVES : CFL criterion based on the barotropic wave speed. It should be inferior to 0.89
(i.e. section 4.2.5).

∗ NBQ_HADV : CFL criterion based on the pseudo-acoustic wave speed. This parameter should
be inferior to 1.7.

• Compile your model

• Edit croco.in file, add the following line

time_stepping_nbq: NDTNBQ CSOUND_NBQ VISC2_NBQ
1 "5xsqrt(gHmax)" 1.e-2

– NDTNBQ : irrelevant parameter

– CSOUND_NBQ : Pseudo-acoustic waves speed. This parameter should be at least superior to five
times the barotropic wave speed (sqrt(gHmax)) in your domain and inferior or equal to the acoustic
waves speed (1500 m/s).

– VISC2_NBQ : Bulk Viscosity (i.e. section 1.4)

• Run your simulation.

If it’s blow-up, change your time steps to respect the CFL criteria (increase NDTFAST such as NBQ_HADV<1.7).
Relaxing the hydrostatic hypothesis, change the dynamic of the small-scale processes and thus potentially the
intensity of the small-scale currents leading to more drastic baroclinic CFL conditions. So if it’s still blow up,
reduce the baroclinic time step (dt).

294 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.18.4 NBQ OPTIONS

• In which cases, do I need to activate the NBQ Precise option?
Two versions of CROCO-NBQ are currently available: NBQ_PERF & NBQ_PRECISE. NBQ_PERF solve the
compressible and non-hydrostatic Navier-Stokes equations and conserve precisely the volume. This version is the
most efficient in terms of computational time. NBQ_PRECISE solve also the compressible and non-hydrostatic
Navier-Stokes equations and conserve precisely the mass. However, this version is more time consuming (to con-
serve precisely the mass, an update of the sigma vertical grid at each fast time step is needed). By default, the
NBQ_PERF option is defined in the cppdefs_dev.h file. In regional or coastal configurations (resolution ranges of
50-300m), no significant differences in terms of oceanic dynamics have been observed so far. However, specific
care is needed when surface waves are explicitly represented. In such configurations, the fluctuations of the vertical
grid are more pronounced and NBQ_PRECISE considerably improve the representation of the surface waves. At
resolution ranges of 1m, further investigations are needed.

Related CPP options (for users):

NBQ_PERF The most efficient version in terms of computational time
NBQ_PRECISE The most precise version in terms of mass conservation

• Options of open boundaries conditions
An Orlanski radiation condition (OBC_NBQORLANSKI) has been applied to the internal mode velocities, tem-
perature, and salinity at the open boundaries. Whereas barotropic and acoustic waves are radiated through the
boundary using the methods of characteristics. It is recommended to use a sponge layer to deal with strong non-
linearities (as for example to avoid reflexion of solitary waves at the lateral boundaries).

Related CPP options (for users):

OBC_NBQ OBC
OBC_NBQORLANSKI Radiative conditions
NBQ_NUDGING interior/bdy forcing/nudging
NBQCLIMATOLOGY interior/bdy forcing/nudging
NBQ_FRC_BRY bdy forcing/nudging

2.18.5 Appendix : some words on CROCO-NBQ kernel

In CROCO-NBQ, the ”fast mode” includes in addition to the external (barotropic) mode, the pseudo-acoustic
mode that allows computation of the nonhydrostatic pressure within a non-Boussinesq approach [Auclair et
al., 2018]. A two-level time-splitting kernel is thus conserved, but the fast time step integrates a 3D-
compressible flow. Hence, acoustic waves or “pseudo-acoustic” waves have indeed been re-introduced to
avoid Boussinesq-degeneracy which inevitably leads to a 3D Poisson-system in non-hydrostatic Boussinesq
methods and to reduce computational costs. As long as “pseudo-acoustic” waves remain faster than the
fastest physical processes in the domain, their phase-velocity can artificially be slowed down rendering un-
physical high-frequency processes associated with bulk compressibility but preserving a coherent slow non-
hydrostatic dynamics with a softening of the CFL criterion. More details are given on http://poc.omp.obs-
mip.fr/auclair/WOcean.fr/SNH/Pub/Tutorials/CROCO/Html_maps/Croco2018_map.html.

Related CPP options (for developers):

2.18. NBQ Tutorial 295

Croco Documentation, Release 2.0.0

NBQ_IMP The equation of motion for vertical velocity is solved implicitly in the vertical direction.
NBQ_THETAIMPThe semi-implicit theta method is used to reduce the numerical dissipation iduced by the implic-

itation of the vertical velocity equation in the vertical direction (i.e. Fringer et al. 2006)
NBQ_HZ_PrognosticPrognostic the grid evolution
NBQ_AM4 Classical fourth-order Adams-Moulton (AM4) time-stepping method
NOT_NBQ_AM4Forward-Backward time-stepping method
NBQ_MASS Perfect conservation of mass (undef NBQ_MASS : perfect conservation of volume)
NBQ_HZCORRECTThe sigma vertical grid is updated at each fast time step to reflect the newly solved elevations (as

the free surface is now explicitly resolved at each fast time step).
NBQ_GRID_SLOWThe sigma vertical grid is updated only at each slow time step (reduce the computational time).
HZR Hzr Trick to change the name of a variable in the equation of mass conservation

Related CPP options (for users):

NBQ Solving the compressible and non-hydrostatic Navier-Stokes equations

2.19 Coupling tutorial

Here you will be guided to build a configuration and run it in forced and coupled modes using the tools provided
in croco_tools/Coupling_tools and croco/SCRIPTS/SCRIPTS_COUPLING.

2.19.1 Summary of steps for coupling

1. Compilation

• Compile OASIS

• Compile your models in coupled mode with the same compilers and netcdf libraries
2. Namelists

• Define the namelist for OASIS: namcouple

• Check/edit the namelists and input files of the different models (CROCO= croco.in,
WW3: ww3_grid.inp, ww3_shel.inp, WRF: namelist.input, MNH: EXSEG1.nam, TOY:
TOYNAMELIST.nam)

3. Restart files

• Create restart files for the coupler

• If you are coupling nested models to CROCO, create a cplmask file

• Create restart/input files for the different models (see Preprocessing)

4. Run

• Launch the models simultaneously, e.g.:

mpirun -np 4 wwatch : -np 4 crocox

5. Outputs

• Check logs and ouptuts, especially:

– The debug.root.0? files

– The model log files (e.g. croco.log)

– If you have problems in your coupled run, first check the dimensions of the grids in all grid files
(models grid files and OASIS grids and masks files)

296 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

The coupling tools provided with the model will perform steps 2-4. In the following tutorial, you will be guided
through all the steps. First, you will try a simple coupling example to help you understand the coupling philosophy
and steps to run a coupled simulation, then you can go to the advanced tutorial to perform coupled simulations
using the provided coupling tools and scripts.

2.19.2 Compiling in coupled mode

Warning: You need to compile OASIS before compiling the models

Note: In case of error during compilation, refer to the “Tips in case or error during compilation” below

2.19.2.1 Compiling OASIS

1. You need to have dowloaded the OASIS sources (see Download section). They are assumed, in the following,
to be under: $HOME/oasis/oasis3-mct

2. Then, explore the oasis3-mct directory, you will find:

• doc: oasis documentation

• lib: mct, psmile, and scrip libraries folders

• util: with notably make_dir folder containing TopMakefileOasis3, make.inc, and several make.
* for different machines

• examples

3. Enter the make_dir directory

cd ~/oasis/oasis3-mct/util/make_dir

4. Edit the configure file for your machine make.*.

5. Edit the make.inc file to point to your make.YOURMACHINE (examples for machines we have tested can be
found here: $HOME/croco/croco/SCRIPTS/SCRIPTS_COUPLING/OASIS_IN/make.*)

include $(home)/oasis/oasis3-mct/util/make_dir/make.YOURMACHINE

Warning: Absolute paths are mandatory in make.* files!

6. Clean your directory and launch compilation

make realclean -f TopMakefileOasis3 > oasis_clean.out
make -f TopMakefileOasis3 > oasis_make.out

If compilation is successful, you should find in ~/oasis/ a compile_oasis3-mct directory including:

• lib containing libmct.a libmpeu.a libpsmile.MPI1.a libscrip.a

• build

Note: In case of error during compilation, note that classical errors are associated to:

• files missing executable permission

• issues in the paths given in make.yourmachine

2.19. Coupling tutorial 297

Croco Documentation, Release 2.0.0

• compilation options that have to be set carefully (in make.YOURMACHINE)

2.19.2.2 Compiling CROCO

Note: CROCO needs to be compiled for each configuration and parallel settings. Thus the scripts provided in
the croco/SCRIPTS/SCRIPTS_COUPLING toolbox provide an option to compile CROCO “online” when the run
is launched according to the configuration, coupled options and parallel settings. Here is just a roadmap on how to
do it “by hand”.

1. To work in coupled mode you need to activate OA_COUPLING and/or OW_COUPLING in cppdefs.h:

#define OA_COUPLING
#define OW_COUPLING

You also need to define MPI:

#define MPI

Warning: MPI is mandatory for coupling, even if the run is launched on 1 CPU. Indeed the MPI
communicator is used to communicate with OASIS.

2. Edit all the usual paths, compilers, libraries in jobcomp, and notably OASIS path PRISM_ROOT_DIR:

set OASIS-MCT (or OASIS3) directories if needed
#
PRISM_ROOT_DIR=~/oasis/compile_oasis3-mct

You may also eventually need to set/change compilation options.

Warning: -O3 compilation option is quite agressive and may result in some errors on some machines
and with some compilers during coupled run (e.g. stokes velocities set to 0). To avoid such errors, set
optimization to -O2.

3. And compile:

./jobcomp >& compile_coupled.log

If compilation aborts (netcdf errors in oasis functions), you may need to change the following lines to:

LDFLAGS1="$LDFLAGS1 $LIBPSMILE $NETCDFLIB"
CPPFLAGS1="$CPPFLAGS1 ${PSMILE_INCDIR} $NETCDFINC"
FFLAGS1="$FFLAGS1 ${PSMILE_INCDIR} $NETCDFINC"

Then try to compile again.

298 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.19.2.3 Compiling the TOY model

A toy model is available in the croco/SCRIPTS/SCRIPTS_COUPLING/TOY_IN. It consists of a few fortran rou-
tines, that exchange variables with OASIS to mimic another model (wave, atmosphere, ocean). The toy model is
compiled using a Makefile. See the readme in croco/SCRIPTS/SCRIPTS_COUPLING/TOY_IN for instructions.

1. Copy the TOY model in your configuration directory and check/edit the Makefile.YOURMACHINE for your
machine (examples for a few clusters are provided), and link it to Makefile:

cp -r ~/croco/croco/SCRIPTS/SCRIPTS_COUPLING/TOY_IN ~/CONFIGS/BENGUELA_LR_cpl/.
cd ~/CONFIGS/BENGUELA_LR_cpl/TOY_IN
ln -sf Makefile.YOURMACHINE Makefile

2. Then use the compilation script:

./make_toy_compil.sh

If the compilation is successfull you should have the TOY executables toy_wav toy_atm toy_oce

2.19.2.4 Compiling WRF

Note: Currently the distributed version of WRF does not include coupling with waves, if you want to use such
functionality you can use the fork including modifications for coupling with WW3 and CROCO through the OASIS
coupler, but note that this is a development version. . . https://github.com/wrf-croco/WRF/tree/WRF-CROCO

WRF needs to be compiled both in forced and coupled modes.

1. Enter WRF directory, and configure your compilation

cd ~/wrf/WRFV4.2.1
cleaning before configure (must be done if you re-compile)
./clean -a
Then launch configure
./configure

Choose distributed memory option (dm) and compiler option in adequation with your machine setup (in our
case it will be #24).

Note:
• For creating model output files larger than 2Go, you should consider using netcdf large file support

function. It is activated through the WRFIO_NCD_LARGE_FILE_SUPPORT environment variable (set to
1).

• WRF is strict on netcdf dependencies, meaning that problems during compilation are often due to
netcdf settings. WRF uses:

• NETCDF environment variable that can be set before launching configure, otherwise configure will ask
you to provide your netcdf full path

• NETCDF4 environment variable that can be set to 1 if you want to use netcdf 4 facilities (if your netcdf
library allows it). When using netcdf4 library, check if all dependencies are properly set, they are
usually found with nf-config --flibs command

• always check all the lines associated to netcdf library and dependencies in the generated configure.
wrf: NETCDF4_IO_OPTS, NETCDF4_DEP_LIB, INCLUDE_MODULES (last line should be netcdf inlcude
path), LIB_EXTERNAL (last line should be netcdf library and its dependencies).

2. Check and edit the generated configure.wrf file. Notably edit the parallel compiler lines

2.19. Coupling tutorial 299

https://github.com/wrf-croco/WRF/tree/WRF-CROCO

Croco Documentation, Release 2.0.0

DM_FC = mpiifort
DM_CC = mpiicc

3. First compile in uncoupled mode

./compile em_real >& compile_uncoupled.log

Note: WRF supports using multiple processors for compilation. The default number of processors used
is 2. But you can compile with more processors by using the J environment variable set (example for 8
processors: J=-j 8).

Note: WRF compilation will take a while (about 1h) and may take a lot of memory. You may need to
launch compilation in a job. Examples for a few machines are provided here, along with a script to help you
compile:

~/croco/croco/SCRIPTS/SCRIPTS_COUPLING/WRF_IN/*.compile.wrf.*
~/croco/croco/SCRIPTS/SCRIPTS_COUPLING/WRF_IN/make_WRF_compil

If compilation is successful, you will find in WRF main directory the following executables:

• wrf.exe

• real.exe

• ndown.exe

• tc.exe

4. Copy them to dedicated directory (as well as your configure.wrf, in case you need to recompile)

mkdir exe_uncoupled
cp configure.wrf exe_uncoupled/.
cp main/*.exe exe_uncoupled/.
cp compile_uncoupled.log exe_uncoupled/.

5. To compile in coupled mode, you need to edit configure.wrf, first copy it to configure.wrf.coupled

cp configure.wrf configure.wrf.coupled

And then edit configure.wrf.coupled

Just before: #### Architecture specific settings ####, add for OASIS:
OA3MCT_ROOT_DIR = $(OASISDIR)

In: #### Architecture specific settings ####, add -Dkey_cpp_oasis3 :
ARCH_LOCAL = -DNONSTANDARD_SYSTEM_FUNC -DWRF_USE_CLM $(NETCDF4_IO_
→˓OPTS) -Dkey_cpp_oasis3

In: # POSTAMBLE, add includes and libraries associated to OASIS before netcdf␣
→˓ones, as follows:
INCLUDE_MODULES = $(MODULE_SRCH_FLAG) \

$(ESMF_MOD_INC) $(ESMF_LIB_FLAGS) \
-I$(WRF_SRC_ROOT_DIR)/main \
-I$(WRF_SRC_ROOT_DIR)/external/io_netcdf \
-I$(WRF_SRC_ROOT_DIR)/external/io_int \
-I$(WRF_SRC_ROOT_DIR)/frame \
-I$(WRF_SRC_ROOT_DIR)/share \

(continues on next page)

300 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

-I$(WRF_SRC_ROOT_DIR)/phys \
-I$(WRF_SRC_ROOT_DIR)/chem -I$(WRF_SRC_ROOT_DIR)/inc \
-I$(OA3MCT_ROOT_DIR)/build/lib/mct \
-I$(OA3MCT_ROOT_DIR)/build/lib/psmile.MPI1 \
-I$(NETCDFPATH)/include \

LIB_EXTERNAL = \
-L$(WRF_SRC_ROOT_DIR)/external/io_netcdf -lwrfio_nf \
-L$(OA3MCT_ROOT_DIR)/lib -lpsmile.MPI1 -lmct -lmpeu -

→˓lscrip \
-L$(NETCDF)/lib -lnetcdff -lnetcdf

Examples of configure.wrf.uncoupled and configure.wrf.coupled are provided in croco/
SCRIPTS/SCRIPTS_COUPLING/WRF_IN/CONFIGURE_WRF/.

Warning: Compiling WRF in coupled mode required a lot of memory (>3.5Go). If needed, submit a
job with extra-memory to compile.

6. To compile

./clean -a # clean before compilation
cp configure.wrf.coupled configure.wrf
./compile em_real >& compile.coupled.log

If compilation is successful, you will find in WRF main directory the following executables:

• wrf.exe

• real.exe

• ndown.exe

• tc.exe

7. Copy them to dedicated directory (as well as your configure.wrf, in case you need to recompile)

mkdir exe_coupled
cp configure.wrf exe_coupled/.
cp main/*.exe exe_coupled/.
cp compile.coupled.log exe_coupled/.

Note: Using the WRF moving nest in coupled mode is possible, but only the parent static model can be coupled
through OASIS. Feedback between the static parent domain and the moving nest are used to update fields computed
at high-resolution in the moving nest on one hand, and coupled to the ocean or wave model in the static parent
domain on the other hand. To use this functionnality, WRF has to be compiled with the moving nest option, and
a dedicated Registry.EM is available in WRF_IN/FOR_MOVING_NEST to allow the moving nest to receive surface
updates from the parent static domain, that is coupled to the ocean or wave model. Copy this Registry.EM in
your WRF/Registry directory before compiling with the moving nest option. Warning, this Registry.EM should
not be used in “normal” mode (no moving nest).

2.19. Coupling tutorial 301

Croco Documentation, Release 2.0.0

2.19.2.5 Compiling WPS

Note: Note that you should use the WPS version consistent with your WRF version!

1. Enter WPS directory, and configure your compilation

cd ~/wrf/WPS
./clean -a
./configure

Choose distributed memory option (dm) and compiler option in adequation with your machine setup.

2. Check and edit configure.wps, notably WRF_DIR and compilers

WRF_DIR = ../WRF

DM_FC = mpiifort
DM_CC = mpiicc

3. Compile WPS

./compile >& compile_wps.log

If compilation is successful, you will find in your WPS directory

geogrid.exe
ungrib.exe
metgrid.exe

Alternatively, a compile_wps.bash and examples of configure.wps are provided in the Coupling_tools/
WRF_WPS.

2.19.2.6 Compiling WW3

Warning: Currently the following compilation procedure, and coupling tools provided in croco are designed
to work with the WW3 6.07.1 release plus some additional changes in a few coupled routines in WW3 which
are provided in the croco/SCRIPTS/SCRIPTS_COUPLING/WW3_IN directory. See readme_ww3_version in
this directory. More recent versions of WW3 contains these modifications, but as these more recent versions are
currently not tagged as “releases”, we prefer to stick to the latest official release and just add the few modified
routines.

1. First copy the modified routines into WW3 6.07.1 directory:

cp ~/croco/croco/SCRIPTS/SCRIPTS_COUPLING/WW3_IN/modified_ftn/*.ftn ~/ww3/model/
→˓ftn/.

2. Go to the model bin directory to perform the compilation:

cd ~/ww3/model/bin

WW3 compilation requests 3 files:

• a switch file which contains the parallelisation, and the numerical parameterization setting. These
swhiches are keywords listed in a so-called switch file. Many templates are provided by institutions
with a suffix switch_*. This file is used during compilation. Open one of the coupled example switch
file: switch_OASOCM (for coupling with an ocean model) or switch_OASACM (for coupling with an
atmospheric model)

302 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

– For running in coupled mode, some switches are mandatory: DIST MPI COU OASIS and OASOCM
(for coupling with an ocean model) and/or OASACM (for coupling with an atmospheric model)

– Also, the switches to interpolate in time current or wind need to be set to 0 in coupled case mode
(and forced cases used to compare to coupled mode): CRT0 WNT0

• a comp.COMPILER file

• a link.COMPILER file

The 2 later files contain useful options and links for compilation. You therefore need to check the ones that
you will use depending on you compiler and machine settings.

In this tutorial, let’s take the example of comp.Intel and link.Intel files.

3. You can edit the compilation options in comp.Intel, for instance:

opt="-c $list -O3 -ip -xHost -no-fma -fp-model precise -assume byterecl -fno-
→˓alias -fno-fnalias -module $path_m"

4. First we will compile WW3 in uncoupled mode. To do that, create an equivalent switch file than
switch_OASOCM but without coupling switches:

cp switch_OASOCM switch_UNCOUPLED

In switch_UNCOUPLED, erase the following switches: COU OASIS OASOCM

5. Now you are ready to setup and compile WW3:

./w3_setup .. -c Intel -s UNCOUPLED

./w3_automake

If compilation is successful, you will find your executables in ../exe, you should move these executables
to a dedicated directory:

mkdir ../exe_UNCOUPLED
mv ../exe/* ../exe_UNCOUPLED/.

6. To compile in coupled mode, check that the $OASISDIR variable correctly refers to your OASIS compile
directory, and re-setup and re-launch your compilation:

For coupling with the ocean

./w3_clean -c

./w3_setup .. -c Intel -s OASOCM

./w3_automake

If compilation is successful, you should move your executable to a proper directory

mkdir ../exe_OASOCM
mv ../exe/* ../exe_OASOCM/.

For coupling with the atmosphere

./w3_clean -c

./w3_setup .. -c Intel -s OASACM

./w3_automake

If compilation is successful, you should move your executable to a proper directory

mkdir ../exe_OASACM
mv ../exe/* ../exe_OASACM/.

For coupling with both the ocean and the atmosphere, first create a switch_OASOCM_OASACM

2.19. Coupling tutorial 303

Croco Documentation, Release 2.0.0

cp switch_OASOCM switch_OASOCM_OASACM

Edit it to have both OASOCM and OASACM switches

F90 NOGRB NC4 TRKNC DIST MPI PR3 UQ FLX0 LN1 ST4 STAB0 NL1 BT4 DB1 MLIM TR0 BS0␣
→˓IC2 IS0 REF1 XX0 WNT2 WNX1 RWND CRT0 CRX1 TIDE COU OASIS OASOCM OASACM O0 O1␣
→˓O2 O2a O2b O2c O3 O4 O5 O6 O7

And compile

./w3_clean -c

./w3_setup .. -c Intel -s OASOCM_OASACM

./w3_automake

If compilation is successful, you should move your executable to a proper directory

mkdir ../exe_OASOCM_OASACM
mv ../exe/* ../exe_OASOCM_OASACM/.

Note: a script to help you compile the various mode is also available in: $HOME/croco/croco/SCRIPTS/
SCRIPTS_COUPLING/WW3_IN/make_WW3_compil

2.19.2.7 Tips in case of errors during compilation

In case of strange errors during compilation (e.g. “catastrophic error: could not find . . . ”), try one of these solutions:

• check your home space is not full ;-)

• check your paths to compilers and libraries (especially Netcdf library)

• check that you have the good permissions, and check that your executable files (configure, make. . .) do are
executable

• check that your shell scripts headers are correct or add them if necessary (e.g. for bash: #!/bin/bash)

• try to exit/log out the machine, log in back, clean and restart compilation

Errors and tips related to netcdf library:

• with netcdf 4.3.3.1: need to add the following compilation flag for all models: -mt_mpi The error associated
to a missing -mt_mpi flag is of this type: “ /opt/intel//impi/4.1.1.036/intel64/lib/libmpi_mt.so.4: could not
read symbols: Bad value “

• with netcdf 4.1.3: do NOT add -mt_mpi flag

• with netcdf4, need to place hdf5 library path in your environment:

export LD_LIBRARY_PATH=YOUR_HDF5_DIR/lib:$LD_LIBRARY_PATH

• with netcdf 4, if you use the library splitted in 2: C part and Fortran part, you need to place links to C library
before links to Fortran library and need to put both path in this same order in your LD_LIBRARY_PATH

In case of ‘segmentation fault’ error:

• try to allocate more memory with “unlimited -s unlimited”

• try to launch the compilation as a job (batch) with more allocated memory

304 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.19.3 Simple CROCO-TOY coupled example

For this first step towards coupling, we will just use the BENGUELA_LR configuration and add coupling with a
toy model that mimics a wave model. The toy model is available in the croco/SCRIPTS/SCRIPTS_COUPLING/
TOY_IN. It consists of a few fortran routines, that exchange variables with OASIS to mimic a wave or atmosphere
model. For a more advanced coupling with actual atmospheric and wave models, you can go to the other sections
of the coupling tutorial.

2.19.3.1 Get necessary files

First create the configuration, here named BENGUELA_TOY:

mkdir BENGUELA_TOY

Get the useful files for CROCO compilation and settings:

cp ~/croco/croco/OCEAN/cppdefs.h .
cp ~/croco/croco/OCEAN/param.h .
cp ~/croco/croco/OCEAN/jobcomp .
cp ~/croco/croco/OCEAN/croco.in .

Get the TOY model:

cp -r ~/croco/croco/SCRIPTS/SCRIPTS_COUPLING/TOY_IN .

Get the useful input files:

wget "https://data-croco.ifremer.fr/CONFIGS_EXAMPLES/BENGUELA_LR_INPUT_FILES/CROCO_
→˓FILES.tar.gz"
tar -zxvf CROCO_FILES.tar.gz

wget "https://data-croco.ifremer.fr/CONFIGS_EXAMPLES/BENGUELA_LR_INPUT_FILES/TOY_
→˓FILES.tar.gz
tar -zxvf TOY_FILES.tar.gz

Get some useful scripts:

cp -r ~/croco/croco/SCRIPTS/SCRIPTS_COUPLING/SCRIPTS_TOOLBOX/OASIS_SCRIPTS .

2.19.3.2 Compile

Compile OASIS
For running in coupled mode, you need to have OASIS compiled. For OASIS follow the instructions in the
Compilation section of the coupling tutorial. We assume here that you have OASIS compiled in ~/oasis/
compile_oasis3-mct

Compile CROCO
In cppdefs.h in the “REGIONAL (realistic) Configurations” section:

#define MPI
#define OW_COUPLING
#define MRL_WCI

Note: MPI is mandatory for coupling, even if the run is launched on 1 CPU. Indeed the MPI communicator is used
to communicate with OASIS.

2.19. Coupling tutorial 305

Croco Documentation, Release 2.0.0

Edit all the usual paths, compilers, libraries in jobcomp, and notably OASIS path PRISM_ROOT_DIR:

set OASIS-MCT (or OASIS3) directories if needed
#
PRISM_ROOT_DIR=~/oasis/compile_oasis3-mct

And compile:

./jobcomp >& compile_coupled.log

If the compilation is successfull you should have the CROCO executable croco.

Compile the TOY model
A script make_toy_compil.sh is provided. Check and eventually edit it (notably the line regarding the envi-
ronment source ../myenv_mypath.sh, that should be adapt to point towards you environment file where the
compilers and libraries are defined). You should also check/edit the Makefile.MACHINE for your machine.

cd TOY_IN
ln -sf Makefile.YOURMACHINE Makefile
./make_toy_compil.sh

If the compilation is successfull you should have the TOY executables toy_wav toy_atm toy_oce

2.19.3.3 Prepare the configuration files for a 3-day run

Set up CROCO
Edit the croco.in:

time_stepping: NTIMES dt[sec] NDTFAST NINFO
72 3600 60 1

You can also change the frequency of outputs:

history: LDEFHIS, NWRT, NRPFHIS / filename
T 24 0

CROCO_FILES/croco_his.nc
averages: NTSAVG, NAVG, NRPFAVG / filename

1 24 0
CROCO_FILES/croco_avg.nc

And set to True the outputs for waves fields:

wave_history_fields: hrm frq action k_xi k_eta eps_b eps_d Erol eps_r
20*T

wave_average_fields: hrm frq action k_xi k_eta eps_b eps_d Erol eps_r
20*T

wci_history_fields: SUP UST2D VST2D UST VST WST AKB AKW KVF CALP KAPS
20*T

wci_average_fields: SUP UST2D VST2D UST VST WST AKB AKW KVF CALP KAPS
20*T

Set-up the TOY model
The toy model can send either fields from a model file (for instance generated by running a model in forced mode
previously), or constant or sinusoidal fields. Check the readme in TOY_IN for more informations.

In every cases, you need to provide a grid to the toy model, here named grid_wav.nc. Here, the toy model will
read and exchange variables specified in the TOYNAMELIST.nam from an input file, here named toy_wav.nc.

Get the chosen TOYNAMELIST.nam.wav.ow and rename it:

306 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

cp TOY_IN/TOYNAMELIST.nam.wav.ow TOYNAMELIST.nam.wav

You need to edit all the fields denoted into brackets: <...>, as well as the paths towards the input files in
TOYNAMELIST.nam.wav:

&NAM_OASIS NB_TIME_STEPS=12,
DELTA_T=21600,
GRID_FILENAME='grid_wav.nc' /

&NAM_FCT_SEND CTYPE_FCT='FILES',
CNAME_FILE='toy_wav.nc',
VALUE=1 /

&NAM_RECV_FIELDS NB_RECV_FIELDS=3,
CRCVFIELDS(1)='TOY__SSH',
CRCVFIELDS(2)='TOY_UOCE',
CRCVFIELDS(3)='TOY_VOCE' /

&NAM_SEND_FIELDS NB_SEND_FIELDS=3,
CSNDFIELDS(1)='TOY_T0M1',
CSNDFIELDS(2)='TOY___HS',
CSNDFIELDS(3)='TOY__DIR' /

In the current example, the toy model is set to run 12 time steps of 21600s.

Also, prepare the toy input files. To do so you can use the script provided in OASIS_SCRIPTS/
create_oasis_toy_files.sh:

./OASIS_SCRIPTS/create_oasis_toy_files.sh TOY_FILES/ww3_20050101_20050131.nc toy_wav.
→˓nc ww3 1,12

You should now have toy_wav.nc and grid_wav.nc files.

2.19.3.4 Prepare OASIS files

Edit OASIS namelist, namcouple, which specifies which fields will be coupled, and at which frequency, etc.

A basis of namcouple files can be found in the croco/SCRIPTS/SCRIPTS_COUPLING/OASIS_IN directory. Copy
the relevant namcouple:

cp ~/croco/croco/SCRIPTS/SCRIPTS_COUPLING/OASIS_IN/namcouple.base.ow.toywav namcouple

In this namcouple, you have to edit all the fields denoted into brackets <...>. Let’s browse the namcouple
file. It has several sections:

• A first section with general settings:

– the number of fields to exchange (in our case 6: 3 from the ocean to
the wave model (SSH, UOCE, VOCE), and 3 from the wave to the ocean model (HS, T0M1, DIR))

– the number and names of model executables: here names must be of 6 characters exactly,
so you need to move your model executable names to these 6-character names:

mv croco crocox
cp TOY_IN/toy_wav toywav

– the duration of the run in seconds: you need to change <runtime>
to your actual duration (3days * 24h * 3600s): 259200

– the debug level (see detailed explanation in the comments in the namcouple file)

2.19. Coupling tutorial 307

Croco Documentation, Release 2.0.0

• A second section, with the informations on exchanged fields. A typical
sub-section for one exchanged field looks like:

CROCO_SSH TOY__SSH 1 <cpldt> 1 oce.nc EXPORTED
<ocenx> <oceny> <wavnx> <wavny> ocnt toyt LAG=<ocedt>
R 0 R 0
SCRIPR
DISTWGT LR SCALAR LATLON 1 4

– line 1: field in sending model, field in target model, unused,
coupling period, number of transformations (here 1 interpolation), restart file, field status

– line 2: nb of pts for sending model grid (without halo) first dim,
and second dim, for target grid first dim, and second dim, sending model grid name, target
model grid name, lag = time step of sending model

– line 3: sending model grid periodical (P) or regional (R), and nb of overlapping
points, target model grid periodical (P) or regional (R), and number of overlapping points

– line 4: list of transformations performed (here only grid interpolation SCRIPR
keyword, see OASIS documentation for more informations)

– line 5: parameters for each transformation (here distributed weight interpolation,
see OASIS documentation for more informations)

You need to edit all the fields denoted into brackets: <...>:

<cpldt> -> 21600 the coupling frequency in seconds for each field you will exchange
<ocenx> -> 41 the number of points in xi direction for CROCO (see param.h)
<oceny> -> 42 the number of points in eta direction for CROCO (see param.h)
<wavnx> -> 41 the number of points in x direction for the TOY model (see grid_wav.nc file)
<wavny> -> 42 the number of points in y direction for the TOY model (see grid_wav.nc file)
<ocedt> -> 3600 the CROCO time step
<wavdt> -> 21600 the TOY model time step (see TOYNAMELIST.nam)

Then, you need to prepare restart files for the coupler (in addition to model initial/restart files). To do so, two scripts
are provided in the Coupling tools to start from calm conditions or previously existing files. Here, we will start
from calm conditions. Note that this script uses the nco library, so that you should have it installed/loaded to run
the script.

First, launch the creation of restart file for OASIS for the toy model:

• first argument: grid name

• second argument: restart file name

• third argument: type of model

• fourth argument: list of variables to initialize to 0

./OASIS_SCRIPTS/create_oasis_restart_from_calm_conditions.sh grid_wav.nc␣
→˓wav.nc toy "TOY_T0M1 TOY___HS TOY__DIR"

Then, do the same for the restart file for OASIS for CROCO model:

./OASIS_SCRIPTS/create_oasis_restart_from_calm_conditions.sh CROCO_FILES/croco_grd.nc␣
→˓oce.nc croco "CROCO_SSH CROCO_EOCE CROCO_NOCE"

You should now have in your configuration directory wav.nc and oce.nc, which are the OASIS restart files.

308 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.19.3.5 Run the models

You are now ready to run CROCO in coupled mode with the toy model:

mpirun -np 2 toywav : -np 4 crocox

Or edit and launch a job to run the coupled models.

If the run went well, you should have in your configuration directory the following files:

grids.nc # grid file for OASIS (created automatically)
areas.nc # areas of cells used by some OASIS interpolations (created automatically)
masks.nc # masks file for OASIS (created automatically)
rmp_ocnt_to_toyt_DISTWGT.nc
rmp_toyt_to_ocnt_DISTWGT.nc
rmp_ocnu_to_toyt_DISTWGT.nc
rmp_ocnv_to_toyt_DISTWGT.nc # weight files for OASIS interpolation (one for each grid␣
→˓interpolation)
nout.000000 # OASIS log file
toywav.timers_0000 # OASIS log file for time statistics
crocox.timers_0000 # OASIS log file for time statistics
debug.root.01 # OASIS log file for the master processor for model #1 (toy in our case)
debug.root.02 # OASIS log file for the master processor for model #2 (CROCO in our␣
→˓case)
debug.notroot.01 # OASIS log file for other processors for model #1 (toy in our case)
debug.notroot.02 # OASIS log file for other processors for model #2 (CROCO in our␣
→˓case)
OUTPUT_TOY.txt # log file for the toy
croco.log # log file for CROCO (if you have define the LOGFILE cpp-key, otherwise␣
→˓croco log output is in CPL.o???????)

Note: If you have problems running the coupled model, you need to check:

• The dimensions of the grids in all grid files (models grid files and OASIS grids and masks files)

• The debug.root.0? files

• The model log files (e.g. croco.log)

You can then check your new CROCO outputs in CROCO_FILES (you can see that you have the additional wave
fields outputs (e.g. hrm) and you should see small differences of the surface currents for example if you do a
difference of coupled and non-coupled CROCO outputs).

If you want then to use actual coupling with an atmospheric or wave model, and run production simulation in
coupled mode, follow the next steps of the Coupling tutorial. It uses the full Coupling toolbox provided in
croco_tools/Coupling_tools and croco/SCRIPTS/SCRIPTS_COUPLING. It will help you create a dedicated archi-
tecture for coupled runs, and it will provide you a set of scripts for running coupled simulation without managing
all the files one by one. Basically, the Coupling toolbox will manage:

• CROCO compilation if requested

• Copying the model executables to your configuration directory

• Getting models input files

• Preparing OASIS restart files

• Editing namelists, that is replacing automatically all the fields into
brackets <...> in the different namelist files (for all models and for OASIS)

• Launching the run

• Putting output files in a dedicated output directory

2.19. Coupling tutorial 309

Croco Documentation, Release 2.0.0

• Putting restart files for a future run in a dedicated restart directory

• Eventually launching the next job if requested

2.19.4 Advanced coupling tutorial

If you have successfully run the simple CROCO-TOY coupled example, and you want to perform more advanced
coupled simulation, you can follow this advanced coupling tutorial.

Note that it requires to be quite familiar with the various models to couple.

A set of coupling tools has been designed to help building and runing coupled configurations. It is provided within
the croco/SCRIPTS/SCRIPTS_COUPLING directory.

Some pre-processing tools are also provided in the croco_tools/Coupling_tools directory.

First the contents of the SCRIPTS_COUPLING toolbox will be described, and then the different steps for running
a coupled simulation.

2.19.4.1 Coupling tools contents

The croco/SCRIPTS/SCRIPTS_COUPLING toolbox contains several sub-directories:

• SCRIPTS_TOOLBOX: contains all the scripts, namelists, and routines

• OASIS_IN: contains base namelists, and compilation file examples

• CROCO_IN: contains base namelist

• WW3_IN: contains base namelists, and useful files for compilation

• WRF_IN: contains base nameslist, and usesul files for compilation

• TOY_IN: contains the toy mode sources, and base namelists

submitjob.sh Script to create and launch job
mynamelist.sh Namelist for the run (models, dt, output,. . .)
myjob.sh Informations about the job (date, job duration,. . .)
myenv_mypath.sh Machine environment and path to models

In OASIS_IN:

make.MACHINE Example files for OASIS compilation on different MA-
CHINES

namcouple.base.*

Namelist files for the different coupled modes in
which
<...> will be replaced by cpl_nam.sh from
SCRIPTS_TOOLBOX

namcouple.base.aw.debug Example of a namelist files with debug options
namcouple.base.aw.nointerp Example of namelist with given interpolation file

In CROCO_IN:

310 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

croco.in.base

Base namelist file for CROCO (timestepping, input,
output. . .),
in which <...> will be replaced by oce_nam.sh
from SCRIPTS_TOOLBOX

cppdefs.h.base

Base cppdefs.h file for CROCO in which coupling
options will be
replaced by oce_compile.sh from
SCRIPTS_TOOLBOX

param.h.base

Base param.h file for CROCO in which grid size and
MPI options will be
replaced by oce_compile.sh from
SCRIPTS_TOOLBOX

jobcomp Script to compile CROCO, with adapted paths and en-
vironment variables

In WRF_IN:

compile.wrf.* Jobs to launch make_WRF_compil on some MA-
CHINES

make_WRF_compil Script to compile wrf
configure.namelist.real Configure file to edit for running real
run_real.bash Script to run real (wrf pre-processing)
job.real.* Job script to run real
namelist.input.base.complete

Namelist base in which <...> will be replaced by
run_real

and atm_nam.sh from SCRIPTS_TOOLBOX

README.namelist Readme to know all the namelist options available
(also available in WRF)

myoutfields.txt

Example of file that can be prescribed in wrf namelist
to

add/remove variable outputs

CONFIGURE_WRF/MACHINE
configure.wrf.coupled Example of configure file for compiling wrf in coupled

mode
configure.wrf.uncoupled Example of configure file for compiling wrf in forced

mode

In WW3_IN:

2.19. Coupling tutorial 311

Croco Documentation, Release 2.0.0

switch_* Switches for the different modes
ww3_grid.inp.base

Grid input file in which <...> (timesteps, etc)
will be replaced by wav_getfile.sh script

ww3_prnc.inp.* prnc input file for prerpating ww3 input files
ww3_strt.inp strt input file for running ww3_strt
ww3_shel.inp.base.*

shel input files for the different modes in which
<...>

(dates, etc) will be replaced by wav_getfile.sh

ww3_ounf.inp.base ounf input file in which dates will be replaced
ww3_ounp.inp.base ounp input file in which dates will be replaced
ww3_bounc.inp boundary input file for running ww3_bounc
make_WW3_compil Script to compile ww3
modified_ftn Directory with a few ww3 functions modified from

v6.07.1

In SCRIPTS_TOOLBOX

312 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

*_nam.sh

Update pre-filled namelist with mynamelist.sh

informations

_get.sh Get input files for the models
*_putfile.sh

Retrieve output and restart files and put them where it
is
specified in header_*.sh

chained_job.sh

Submit all jobs at the beginning with the following
having
condition on the previous

caldat.sh Return the calendar date and time given julian date
julday.sh

Calculate the Julian Day Number for a given month,
day,
and year

caltools.sh Compute dates for the experiment
getversion.sh Return model’s version used (and write it in the log

file)
MACHINE
header.MACHINE

Job header for different machines,
paths toward model’s executables, input directories,
namelist but also execution, output and restart
directories

launch.MACHINE

Script to create app.conf file for launching coupled
runs
with MPMD (multiple executables launch on HPC
clusters)

myenv.MACHINE*

Necessary modules on the different MACHINES to
compile and
run the models

NAMELIST
namelist_*

Different namelists which are concatenated, in
create_config, to build mynamelist.sh

PATHS
path_*.sh Script used in create_config to build

myenv_mypath.sh
OASIS_SCRIPTS
create_oasis_grids_for_wrf.sh

Script to create grids.nc and masks.nc files for
OASIS for WRF (useful only if you are using a
version of WRF
in which the oasis function is not implemented. In the
wrf-croco
fork the function is implemented and this script is not
used).

create_oasis_restart_from_cal. . .

Script to create restart files for OASIS from calm
condition
This script is called in cpl_getrst.sh

create_oasis_restart_from_pre. . .

Script to create restart files for OASIS from
pre-existing
model files. This script can be called in
cpl_getrst.sh

create_oasis_toy_files.sh

Script to create files that will be used by the toy model
to mimic another model.

from_*.sh Useful functions called by the previous scripts
to_wrf_stag_grid.sh Useful functions called by the previous scripts
mpmdconf_create.sh

script to create required config file to run multiple
executables on HPC clusters

2.19. Coupling tutorial 313

Croco Documentation, Release 2.0.0

Note: MPMD (Multiple Program Multiple Data) is supported on some machines. Different executables
are launched and communicate with each other using MPI; all MPI processes are included within the same
MPI_COMM_WORLD communicator. This execution method uses a text file (call here app.conf) which contains
the mapping between MPI processes and executables

The croco_tools/Coupling_tools toolbox contains:

CROCO
README_preprocess_croco Readme to use croco_tools classic pre-processing (in

matlab)
README_nest_cpl Readme to prepare nests in coupled runs
make_grid_from_WRF.m

Script to generate a grid for CROCO from WRF grid
with
eventually a refinement coefficient

find_childgrid_inparentgrid.m

Script to Find the position of a nested grid in the
parent
before using AGRIF tools

job_prepro_matlab.pbs Example job to run matlab preprocessing on a super-
computer

prepro_*.m Example scripts used by the job script
WW3
make_ww3_grd_input_i. . . _grd.m

Script to generate coord. and bathy. file for WW3
from
croco_grd.nc file

script_make_CFSR_wind_for_ww3.sh Script to create wind input file for WW3 from CFSR
script_make_WRF_wind_for_ww3.sh Script to create wind input file for WW3 from WRF
script_make_CROCO_current. . . .sh Script to create current and level input files for WW3
UV2T.sh

Useful functioni to change from U,V to T grid, used
in
above-mentionned scripts

WRF_WPS
README_download_CFSR_data Some useful readme for WPS
README_wps Some useful readme for WPS
README.Vtable Some useful readme for WPS
configure.namelist.wps Configure file to edit for running WPS
Vtable.CFSR_sfc_flxf06 Vtables for CFSR data
Vtable.CFSR_press_pgbh06 Vtables for CFSR data
Vtable.GDAS_4soillevel_my Vtable for GFS/GDAS data
METGRID.TBL.GDAS Table for Metgrid
job.wps.* Job scripts to run WPS pre-processing
run_wps.bash Script to run wps (wrf pre-processing)
CONFIGRE_WPS Examples of configure files for compiling WPS

314 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.19.4.2 Coupling tools philosophy and workflow

The idea of the coupling tools is to facilitate the management of coupled configurations, the run, and displacement
of I/O.

First step is to create a configuration with the usual create_config.bash script, by specifying wich models you
want to use in the models options.

From there a configuration architecture will be built:

HOMEDIR/CONFIGS/MY_CONFIG_NAME
create_config.bash.bck
myenv_mypath.sh
mynamelist.sh
myjob.sh
submitjob.sh
- SCRIPTS_TOOLBOX
- PREPRO
- OASIS_IN
- CROCO_IN
- WW3_IN
- WRF_IN
- XIOS_IN

WORKDIR/CONFIGS/MY_CONFIG_NAME
- OASIS_FILES
- CROCO_FILES
- WW3_FILES
- WRF_FILES
- DATA

The user will provide:

• the environment settings, and paths within the myenv_mypath.sh script

• the settings for the experiment (which models, time stepping, input files. . .) in mynamelist.sh

• the settings for the job (dates notably) in myjob.sh

Then the user launch the job with ./submitjob.sh.

The coupling toolbox manage:

• CROCO compilation if requested

• Copying the model executables to your configuration directory

• Getting models input files

• Preparing OASIS restart files

• Editing namelists, that is replacing automatically all the fields into brackets <...> in the different namelist
files (for all models and for OASIS)

• Launching the run

• Putting output files in a dedicated output directory

• Putting restart files for a future run in a dedicated restart directory

• Eventually launching the next job if requested

2.19. Coupling tutorial 315

Croco Documentation, Release 2.0.0

2.19.4.3 Create your configuration

To prepare your configuration working directory, you can use the script create_config.bash provided in
CROCO sources:

cp ~/croco/croco/create_config.bash ~/CONFIGS/.

Edit your paths and settings in create_config.bash:

→˓#==
BEGIN USER MODIFICATIONS

Machine you are working on
Known machines: Linux DATARMOR IRENE JEANZAY

MACHINE="Linux"

CROCO parent directory
(where croco_tools directory and croco source directory can be found)

CROCO_DIR=~/croco/croco

(continues on next page)

316 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

TOOLS_DIR=~/croco/croco_tools

Configuration name

MY_CONFIG_NAME=BENGUELA_cpl

Home and Work configuration directories

MY_CONFIG_HOME=~/CONFIGS
MY_CONFIG_WORK=~/CONFIGS

Options of your configuration
options=(all-prod-cpl)

Run create_config.bash:

./create_config.bash

Go into your configuration directory, open, check and eventually edit paths in myenv_mypath.sh, and source it
(you need to be in a bash environment):

source myenv_mypath.sh

It will set a few useful paths and environment variables.

2.19.4.4 Pre-processing for coupled run

2.19.4.4.1 CROCO preprocessing

You can run CROCO pre-processing as usual in the $HOME/CONFIGS/BENGUELA_cpl/PREPRO/CROCO directory.
See the usual Pre-processing tutorial.

2.19.4.4.2 WW3 pre-processing

2.19.4.4.2.1 WW3 GRIDGEN

Preprocessing tools for WW3 have been developed under Matlab software. They are available in the GRID-
GEN matlab package (a tutorial is available here: ftp://ftp.ifremer.fr/ifremer/ww3/COURS/WAVES_SHORT_
COURSE/TUTORIALS/TUTORIAL_GRIDGEN/waves-workshop-exercise-gridgen.pdf).

Basic steps for regular grids are summarized here:

1. Define your grid parameters

dx= ... # in degrees
dy= ... # in degrees
lon1d=[...:dx:...] # in degrees
lat1d=[...:dy:...] # in degrees
[lon,lat]=meshgrid(lon1d,lat1d);

2. Coastline (defined as polygons in coastal boundmat) and bathy (e.g., etopo1.nc) files are used. Some
threshold values are set up

lim_wet=... ; # proportion of cell from which it is considered " wet"
cut_off=0; # depth at which cell is considered as "wet"
dry_val=999; # value given to "dry" cells

2.19. Coupling tutorial 317

ftp://ftp.ifremer.fr/ifremer/ww3/COURS/WAVES_SHORT_COURSE/TUTORIALS/TUTORIAL_GRIDGEN/waves-workshop-exercise-gridgen.pdf
ftp://ftp.ifremer.fr/ifremer/ww3/COURS/WAVES_SHORT_COURSE/TUTORIALS/TUTORIAL_GRIDGEN/waves-workshop-exercise-gridgen.pdf

Croco Documentation, Release 2.0.0

3. Grid can then be generated

depth=generate_grid(lon,lat,ref_dir,’etopo1’,’lim_wet,cut_off, dry_val)

4. Definition of boundaries

lon_start=min(min(lon))-dx;
lon_end=max(max(lon))+dx;
lat_start=min(min(lat))-dy;
lat_end=max(max(lat))+dy;
coord=[lat_start lon_start lat_end lon_end];
[b,n]=compute_boundary(coord,bound,1);

5. Mask generation (use of bathy and coastline)

m=ones(size(depth));
m(depth==dry_val)=0;
b_split=split_boundary(b,5*max([dx dy])); # splitting to make computation more␣
→˓efficient
lim_wet=0.5;
offset=max([dx,dy]);
mask cleaning remove lonely wet cells close to the coastline:
m2=clean_mask(lon,lat,m,b_split,lim_wet,offset);
cell_limit=-1 ; # if this value is negative all water bodies except the larger␣
→˓are considered dry (\ie remove all lakes or closed seas), if positive: has to␣
→˓be the minimum number of cells to consider a body as water
glob=0 ; # if global or not
[m4,mask_map]=remove_lake(m2,cell_limit,glob);

6. To make a grid from another model grid:

• read bathymetry and mask from your model file

• write the bathymetry thanks to write ww3file function, note that WW3 is expecting negative depth in
the ocean

write_ww3file([data_dir,’/’,’bottomm2’,’.inp’],depth’.*(-1));

• build the mask for WW3: mask=1 is water, mask=0 is for points which won’t be computed, mask=2
for active boundary points

• write the mask file

write_ww3file([data_dir,’/’,’mapsta’,’.inp’],mm’);

2.19.4.4.2.2 Alternative

Alternatively, you can build the grid input files from a CROCO grid file. A script is provided in Coupling_tools/
WW3: make_ww3_grd_input_files_from_croco_grd.m

Warning: Do not put the mask to 0 all around your domain, it will create problems in OASIS interpolations.
You can either set 1 for sea points or 2 for boundary points.

318 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.19.4.4.2.3 Wind, current, and water level forcings

Eventually, wind, current, and water level forcing files with a valid time axis have to be prepared (if you need them
as forcing for your WW3 run, not requested in full ocean-wave-atmosphere coupled mode).

A few scripts for preparing ww3 forcing files from CROCO (current and water level, WRF (wind) and CFSR
(wind) files already processed through Process_CFSR_files_for_CROCO.sh are provided in croco_tools/
Coupling_tools/WW3:

• script_make_CROCO_current_and_level_for_ww3.sh

• script_make_WRF_wind_for_ww3.sh

• script_make_CFSR_wind_for_ww3.sh

WW3 routines are named ww3_ROUTINENAME and take as input file by default: ww3_ROUTINENAME.inp.
You have to set parameters in these .inp input files before running.

Steps for WW3 pre-processing are

./ww3_grid # To prepare the grid and run (NB: timesteps are defined in ww3_grid.inp␣
→˓file)
./ww3_prnc # To prepare wind forcing if you want to use one (not mandatory)
./ww3_strt # To prepare initialisation (not mandatory, will take defalut rest state␣
→˓if not runned)
./ww3_bounc # To prepare spectral boundary conditions (not mandatory, will take␣
→˓initial state as boundary conditions if not runned)

These steps will be performed automatically by the coupling scripts, when you submit the job.

Note: Note on mask/mapsta and bathy in WW3: The input map status (MAPSTA) value in the mask file can be :

• -2 : excluded boundary points (sea points covered by ice)

• -1 : excluded sea points (sea points covered by ice)

• 0 : excluded points (land)

• 1 : sea points (ocean)

• 2 : active boundary points • 3 : excluded

• 7 : ice

The final possible values of the output map status MAPSTA are :

• -5 : other disabled point

• -4 : point masked in the two-way nesting

• -3 : dry point covered by ice

• -2 : dry point, not covered by ice

• -1 : wet point covered by ice

• 0 : land point

• 1 : active sea point

• 2 : active boundary point

• 8 : excluded sea/ice point

• 7 : excluded sea point, considered iced

• 15 : excluded sea point, considered dried: can become wet

• 31 : excluded sea point, inferred in nesting

2.19. Coupling tutorial 319

Croco Documentation, Release 2.0.0

• 63 : excluded sea point, masked in 2-way nesting

Coastline limiting depth (m, negative in the ocean) defined in ww3 grid.inp will also affect your MAPSTA: points
with depth values above this coastline limit will be transformed to land points and therefore considered as excluded
points (never become wet points, even if the water level grows over). In the output of the model, the depth (dpt)
is described as : DEPTH = LEV - BATHY, in which the bathy is negative in the sea and positive on land, so the
depth will be positive in the sea and a fillvalue on land. When the input water level (LEV) increases, it increases
the output depth (DPT) value. The input water level forcing value is stored in WLV output variable, thus it gives
the possibility to retrieve the input bathy value at each grid point : BATHY = WLV - DPT.

2.19.4.4.3 WRF preprocessing

WRF pre-processing system is WPS.

Warning: It should be downloaded in the same version than WRF.

Instructions, and scripts are provided in ~/croco/croco_tools/Coupling_tools/WRF_WPS. You can follow
the instructions given in readme_wps, and use the provided scripts: run_wps.bash, job.wps.*

Note: you will need to have WPS compiled before (see preivous compilation tuto).

2.19.4.4.3.1 Running WPS

WRF pre-preocessing with WPS contains 3 steps:

• geogrid: defining the horizontal domain and interpolating geographical static data

• ungrib: decoding Grib meteorological data from reananlyses (or so)

• metgrid: interpolating meteorological data on the model grid

To run WPS, you therefore need:

• Geographical data Geographical data for WRF are available on WRF users website http://www2.mmm.
ucar.edu/wrf/users/download/get_source.html. Geographical data will be available following the link ”here”
under WPS download section. You can download the full complete set, but note that topo files are not all
in it. Download them individually in addition (e.g. topo_30s). Note that Geographical data file is a VERY
LARGE file (49 Go uncompressed). Uncompress them (tar xvjf or tar -zxvf).

• Reanalysis data in grib format (from CFSR for example) to build the boundary

and initial conditions
For example, CFSR data can be downloaded from: https://rda.ucar.edu/datasets/ds093.0/index.html#
!description A dedicated readme for CFSR data download is provided in croco_tools/Coupling_tools/
WRF_WPS. You can use g1print.exe or g2print.exe (depending on you grib data format) available in
WPS/ungrib/ to check the variables in your data files. Usage is

::
./g2print.exe YOURDATAFILE

• Vtable to read the grib data: exsiting Vtables can be found in WPS source directory under WPS/ungrib/
Variable_Tables, and informations to choose Vtables can be found here: http://www2.mmm.ucar.edu/
wrf/users/download/free_data.html

Note: For CFSR, you will need 2 Vtables: one for the fields on pressure levels, one for the fields on surface
level. Both Vtables are available in croco_tools/Coupling_tools/WRF_WPS directory

Vtable.CFSR_press_pgbh06
Vtable.CFSR_sfc_flxf06

320 Chapter 2. Tutorials

http://www2.mmm.ucar.edu/wrf/users/download/get_source.html
http://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://rda.ucar.edu/datasets/ds093.0/index.html#!description
https://rda.ucar.edu/datasets/ds093.0/index.html#!description
http://www2.mmm.ucar.edu/wrf/users/download/free_data.html
http://www2.mmm.ucar.edu/wrf/users/download/free_data.html

Croco Documentation, Release 2.0.0

ungrib therefore needs to be run twice (once for each type). This is done in run_wps.bash (see below).

A few scripts have been made to help you run WPS. You can find them in your croco_tools/Coupling_tools/
WRF_WPS directory:

• configure.namelist.wps

• run_wps.bash

• job.wps.*

1. You should find them in YOURCONFIG/PREPRO/WRF_WPS. Edit all the required lines in configure.
namelist.wps, and edit all the required paths in run_wps.bash

2. Run WPS directly (or using job.wps.pbs if you need to submit it in batch)

./run_wps.bash configure.namelist.wps NBPROCS >& run_wps.log

If WPS is successful, you will obtain in ~/CONFIGS/BENGUELA_cpl/WRF_FILES/WPS_DATA

geo_em.d01.nc
geo_em.d02.nc
met_em.d01.....nc # numerous files where ’...’ are dates
met_em.d02.....nc # numerous files where ’...’ are dates

3. Check your metgrid files by looking at some variables with ncview (e.g. LANDMASK, PSFC, PSML,
SKINTEMP, TT . . .)

If some variables are missing, it is probably because you did not process ungrib and metgrid for all your
input data.

If something appears weird, it may be due to a bad interpolation (for example due to a too coarse land-sea
mask in the original data). If so, re-run WPS with an updated METGRID.TBL

2.19.4.4.3.2 Running real.exe

After running WPS pre-processing, you need to run real.exe program which actually creates WRF input files
for realistic cases from WPS generated files.

Warning: You need to use real.exe from uncoupled compilation even for a coupled run

A script has been made to help you run real.exe: run_real.bash. You can find it in your ~/CONFIGS/
BENGUELA_cpl/WRF_IN directory or in the croco/SCRIPTS/SCRIPTS_COUPLING/WRF_IN. It also uses:

• configure.namelist.real

• namelist.input.base.complete

1. Edit all the required lines in configure.namelist.real, and edit all the required paths in run_real.
bash

2. Eventually edit namelist.input.base.complete with you choice of parameterization. DO NOT EDIT
the stuff placed into brackets: <...>, it will be replaced by run_real.bash with appropriate values.

Warning: For coupling with waves and currents, only YSU surface and boundary layer schemes are
possible at the moment. Be sure to select these.

3. Run run_real.bash (eventually using a batch job as job.real.pbs):

2.19. Coupling tutorial 321

Croco Documentation, Release 2.0.0

./run_real.bash configure.namelist.real NBPROCS >& run_real.log

If real is successful, you will obtain in ~/CONFIGS/BENGUELA_cpl/WRF_FILES/YYYY

wrfinput_d01_DATE
wrfbdy_d01_DATE
wrflowinp_d01_DATE # if sst_update is set to 1
wrfdda_d01_DATE # if nudging is activated i
wrf*_d02_DATE # if you have 2 domains

2.19.4.4.3.3 Additional pre-processing for coupled runs

In addition to traditional WRF pre-processing, you will need to:

• edit options in namelist.input:

– in &physics: isftcflx = 5 if your are coupling with a wave model

– in &physics: sst_update = 1 if your are coupling with an ocean model

– in &domains: num_ext_model_couple_dom = X : number of domains of the other model you are
coupling to WRF

∗ edit CPLMASK variable in wrfinput_d0X for all your coupled domains:

· CPLMASK=1 where you want to couple

· CPLMASK=0 when you do no want to couple

– you may need to create a WRF grid file for OASIS, if you are using the distributed version of WRF
(at the date of 2021-Nov). If you are using the github WRF-CROCO version, you don’t need to create
this grid file, it will be created automatically. If necessary, a script is provided in croco/SCRIPTS/
SCRIPTS_COUPLING/SCRIPTS_TOOLBOX/OASIS_SCRIPTS:

Edit and run create_oasis_grids_for_wrf.sh

Note that the CPLMASK creation may also be performed automatically in the coupling tools.

2.19.4.4.4 OASIS pre-processing

In SCRIPTS_TOOLBOX/OASIS_SCRIPTS you have several scripts to help you prepare:

• WRF grid files for OASIS: create_oasis_grids_for_wrf.sh

• and eventually create oasis restart files from calm or preexisting model outputs:

create_oasis_restart_from_calm_conditions.sh create_oasis_restart_from_preexisting_output_files.
sh

This step is also performed automatically by the coupling tools when launching the run with submitjob.sh.

322 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.19.4.5 Running in COUPLED mode

To run models in coupled mode, you need to have completed the compilation and the preprocessing phases for each
model. Then choose the case you desire in the list below:

2.19.4.5.1 CROCO-TOY (wav or atm)

myenv_mypath.sh should already have been filled in before the compilation.

In TOY_IN, you must have the executable toy_wav. First go to the “Compiling in coupled mode” section otherwise.

To prepare the run you need to modify the files myjob.sh and mynamelist.sh.

• In myjob.sh , you will have to fill in information about dates, job sequence:

Real job duration in sec (converted to MACHINE format in submit job)
export TIMEJOB=1800

#---
Run date settings
#---
Your run can be divided into several jobs (e.g.: 1 year run into 12 jobs of 1␣
→˓month)

Start date of the first Job
export YEAR_BEGIN_JOB=2005
export MONTH_BEGIN_JOB=1
export DAY_BEGIN_JOB=1

Duration of each Job
export JOB_DUR_MTH=1
export JOB_DUR_DAY=0

How many jobs do you want to launch?
export NBJOB=1

Do we start from a restart?
export RESTART_FLAG="FALSE"

Along with the number of cpu you will use for each model

nb of CPUs for each model
export NP_OCEX=2
export NP_OCEY=2
export NP_TOY=2

• In mynamelist.sh, first specify the run type, and the name of the experiment:

Run type (o/a/w, w.Afrc, oa, 2o1a, owa, owa.full...)
- Will select the models to use reading letters o/w/a/toywav/toyoce/toyatm
- Will select the executables, and some options (see in the following␣
→˓sections)
- In coupled mode corresponds to the suffix of the OASIS_IN/namcouple.base.
→˓$RUNtype to use
export RUNtype=ow.toywav
export MOD=`echo $RUNtype | cut -d . -f 1`

Name of the experiment you are about to launch (max 30. CHAR)
export CEXPER=BENGUELA_example_${RUNtype}

2.19. Coupling tutorial 323

Croco Documentation, Release 2.0.0

Then, there is a section indicating where the run will be executed and where the outputs and restarts will be
stored:

#---
RUN_DIR
#---

export EXEDIR_ROOT="$CWORK/rundir/${CEXPER}_execute"
export OUTPUTDIR_ROOT="$CWORK/rundir/${CEXPER}_outputs"
export RESTDIR_ROOT="$CWORK/rundir/${CEXPER}_restarts"

export JOBDIR_ROOT=${CHOME}/jobs_${CEXPER}

Then, there are sections for the different components.

For the coupler settings:

#---
CPL
#---

Namelist
#---------
Note: namelist example files are provided in OASIS_IN/
if you want to use a pre-built weight file for grid interpolations, point to
e.g. namcouple.base.oa.smtho2a
export namcouplename=namcouple.base.${RUNtype}

Coupling frequency
#-------------------
export CPL_FREQ=21600

Restart files for OASIS
#------------------------
If TRUE: create OASIS restart files from pre-existing atm/oce/wav outputs.
If FALSE: create OASIS restart files from calm conditions (need to read at␣
→˓least the grid for each model)
export CPL_restart="FALSE"
export oce_rst_file="${OCE_FILES_DIR}/croco_grd.nc"
export oce_rst_timeind=-1 # time index (-1 is last) in the file to extract as␣
→˓restart
export atm_rst_file="${ATM_FILES_DIR}/wrfinput_dXX_2005_01_01_00" # the domain␣
→˓dXX will be automatically replaced
export atm_rst_timeind=-1 # time index (-1 is last) in the file to extract as␣
→˓restart
export wav_rst_file="${WAV_FILES_DIR}/ww3.200501.nc"
export wav_rst_timeind=-1 # time index (-1 is last) in the file to extract as␣
→˓restart

You should check the coupling frequency, the restart flag and path towards model files to use to create oasis
restart files.

For CROCO settings, first indicate if you request CROCO compilation:

#---
OCE
#---

Where to find or put the croco execuatble
(continues on next page)

324 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

export OCE_EXE_DIR=${CHOME}/CROCO_IN

Online Compilation
#-------------------
#!!!!!!! IMPORTANT NOTE !!!!!!!
If activated, creates croco executable depending on this namelist.
- In param.h it modifies the grid size, the number of procs in x and y␣
→˓direction with those given in myjob.sh
- In cppdefs.h it modifies the following options with informations given␣
→˓below
MPI, OA_COUPLING, OW_COUPLING, MRL_WCI,
XIOS, LOGFILE, MPI_NOLAND,
AGRIF, AGRIF_2WAY,
BULK_FLUX, ONLINE, AROME, ARPEGE, ERA_ECMWF
FRC_BRY, CLIMATOLOGY
TIDES, PSOURCE, PSOURCE_NCFILE, PSOURCE_NCFILE_TS
Other changes of parameterizations, numerical schemes, etc should be made "by␣
→˓hand" in CROCO_IN/cppdefs.h.base
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
export ONLINE_COMP=1

Then, edit model time steps:

Time steps
#-----------
export DT_OCE=3600
export NDTFAST=60

Then several options for zooms, wave coupling are provided. They are generally automatically set-up de-
pending on the RUNtype defined at the beginning.

Then, edit the options regarding the forcing files:

Forcings
#---------
export ini_ext='ini_SODA' # ini extension file (ini_SODA,...)
export bdy_ext='bry_SODA' # bry extension file (clm_SODA,bry_SODA,...)

flag for surface forcing should be true except in the case of atm coupling
if [[$MOD =~ .*a.*]] ; then

export surfrc_flag="FALSE"
else

export surfrc_flag="TRUE"
fi
export interponline=0 # switch (1=on, 0=off) for online surface interpolation.␣
→˓Only works with MONTHLY input files!
export frc_ext='blk_ERA5' # surface forcing extension(blk_ERA5, frc_ERA5,...).␣
→˓If interponline=1 precise the type (ERA_ECMWF or AROME, [CFSR by default],␣
→˓names as cppkey name in croco)

export tide_flag="FALSE" # the forcing extension must be blk_??? otherwise tide␣
→˓forcing overwrites it
export river_flag="FALSE"

Finally edit CROCO output settings:

Output settings
(continues on next page)

2.19. Coupling tutorial 325

Croco Documentation, Release 2.0.0

(continued from previous page)

#----------------
#!!! WARNING: when XIOS is activated the following values (for the model) are␣
→˓not taken into account
export oce_his_sec=86400 # history output interval (in number of second)
export oce_avg_sec=86400 # average output interval (in number of second)

Then go down to the TOY model section, and set the toy options, and model files the toy model should use:

#---
TOY
#---

Where to find the toy executable(s)
export TOY_EXE_DIR=${CHOME}/TOY_IN

Choose for which model you use the toy
If several separate with spaces
options are: oce atm wav
#---------------------------------------
export toytype=("wav")

Forcing files that will be read by the toy
#---
export toyfile=("$CWORK/TOY_FILES/ww3.201301.nc")
export toytimerange=('2,124')

• Now that you have completed the necessary files, you are ready to run your simulation. To do so, simply do

./submitjob.sh

2.19.4.5.2 CROCO-WRF

In your ${CHOME} repository you should have already filled in myenv_mypath.sh.

To prepare the run you need to modify the files myjob.sh and mynamelist.sh.

• In myjob.sh , you will have to fill in information about dates, job sequence:

Real job duration in sec (converted to MACHINE format in submit job)
export TIMEJOB=1800

#---
Run date settings
#---
Your run can be divided into several jobs (e.g.: 1 year run into 12 jobs of 1␣
→˓month)

Start date of the first Job
export YEAR_BEGIN_JOB=2005
export MONTH_BEGIN_JOB=1
export DAY_BEGIN_JOB=1

Duration of each Job
export JOB_DUR_MTH=1
export JOB_DUR_DAY=0

(continues on next page)

326 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

How many jobs do you want to launch?
export NBJOB=1

Do we start from a restart?
export RESTART_FLAG="FALSE"

Along with the number of cpu you will use for each model

nb of CPUs for each model
export NP_OCEX=2
export NP_OCEY=2
export NP_ATM=14

• In mynamelist.sh, first specify the run type, and the name of the experiment:

Run type (o/a/w, w.Afrc, oa, 2o1a, owa, owa.full...)
- Will select the models to use reading letters o/w/a/toywav/toyoce/toyatm
- Will select the executables, and some options (see in the following␣
→˓sections)
- In coupled mode corresponds to the suffix of the OASIS_IN/namcouple.base.
→˓$RUNtype to use
export RUNtype=oa
export MOD=`echo $RUNtype | cut -d . -f 1`

Name of the experiment you are about to launch (max 30. CHAR)
export CEXPER=BENGUELA_example_${RUNtype}

Then, there is a section indicating where the run will be executed and where the outputs and restarts will be
stored:

#---
RUN_DIR
#---

export EXEDIR_ROOT="$CWORK/rundir/${CEXPER}_execute"
export OUTPUTDIR_ROOT="$CWORK/rundir/${CEXPER}_outputs"
export RESTDIR_ROOT="$CWORK/rundir/${CEXPER}_restarts"

export JOBDIR_ROOT=${CHOME}/jobs_${CEXPER}

Then, there are sections for the different components.

For the coupler settings:

#---
CPL
#---

Namelist
#---------
Note: namelist example files are provided in OASIS_IN/
if you want to use a pre-built weight file for grid interpolations, point to
e.g. namcouple.base.oa.smtho2a
export namcouplename=namcouple.base.${RUNtype}

Coupling frequency
#-------------------

(continues on next page)

2.19. Coupling tutorial 327

Croco Documentation, Release 2.0.0

(continued from previous page)

export CPL_FREQ=21600

Restart files for OASIS
#------------------------
If TRUE: create OASIS restart files from pre-existing atm/oce/wav outputs.
If FALSE: create OASIS restart files from calm conditions (need to read at␣
→˓least the grid for each model)
export CPL_restart="FALSE"
export oce_rst_file="${OCE_FILES_DIR}/croco_grd.nc"
export oce_rst_timeind=-1 # time index (-1 is last) in the file to extract as␣
→˓restart
export atm_rst_file="${ATM_FILES_DIR}/wrfinput_dXX_2005_01_01_00" # the domain␣
→˓dXX will be automatically replaced
export atm_rst_timeind=-1 # time index (-1 is last) in the file to extract as␣
→˓restart
export wav_rst_file="${WAV_FILES_DIR}/ww3.200501.nc"
export wav_rst_timeind=-1 # time index (-1 is last) in the file to extract as␣
→˓restart

You should check the coupling frequency, the restart flag and path towards model files to use to create oasis
restart files.

For CROCO settings, first indicate if you request CROCO compilation:

#---
OCE
#---

Where to find or put the croco execuatble
export OCE_EXE_DIR=${CHOME}/CROCO_IN

Online Compilation
#-------------------
#!!!!!!! IMPORTANT NOTE !!!!!!!
If activated, creates croco executable depending on this namelist.
- In param.h it modifies the grid size, the number of procs in x and y␣
→˓direction with those given in myjob.sh
- In cppdefs.h it modifies the following options with informations given␣
→˓below
MPI, OA_COUPLING, OW_COUPLING, MRL_WCI,
XIOS, LOGFILE, MPI_NOLAND,
AGRIF, AGRIF_2WAY,
BULK_FLUX, ONLINE, AROME, ARPEGE, ERA_ECMWF
FRC_BRY, CLIMATOLOGY
TIDES, PSOURCE, PSOURCE_NCFILE, PSOURCE_NCFILE_TS
Other changes of parameterizations, numerical schemes, etc should be made "by␣
→˓hand" in CROCO_IN/cppdefs.h.base
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
export ONLINE_COMP=1

Then, edit model time steps:

Time steps
#-----------
export DT_OCE=3600
export NDTFAST=60

Then several options for zooms, wave coupling are provided. They are generally automatically set-up de-

328 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

pending on the RUNtype defined at the beginning.

Then, edit the options regarding the forcing files:

Forcings
#---------
export ini_ext='ini_SODA' # ini extension file (ini_SODA,...)
export bdy_ext='bry_SODA' # bry extension file (clm_SODA,bry_SODA,...)

flag for surface forcing should be true except in the case of atm coupling
if [[$MOD =~ .*a.*]] ; then

export surfrc_flag="FALSE"
else

export surfrc_flag="TRUE"
fi
export interponline=0 # switch (1=on, 0=off) for online surface interpolation.␣
→˓Only works with MONTHLY input files!
export frc_ext='blk_ERA5' # surface forcing extension(blk_ERA5, frc_ERA5,...).␣
→˓If interponline=1 precise the type (ERA_ECMWF or AROME, [CFSR by default],␣
→˓names as cppkey name in croco)

export tide_flag="FALSE" # the forcing extension must be blk_??? otherwise tide␣
→˓forcing overwrites it
export river_flag="FALSE"

Finally edit CROCO output settings:

Output settings
#----------------
#!!! WARNING: when XIOS is activated the following values (for the model) are␣
→˓not taken into account
export oce_his_sec=86400 # history output interval (in number of second)
export oce_avg_sec=86400 # average output interval (in number of second)

Then continue with the atmospheric model section:

#---
ATM
#---

Where to find the atm exectuable
if [[$RUNtype =~ .*a.* && ($RUNtype =~ .*o.* || $RUNtype =~ .*w.*)]] ; then

export ATM_EXE_DIR=${ATM}/exe_coupled
else

export ATM_EXE_DIR=${ATM}/exe_uncoupled
fi

First the paths for the executable are defined. Those are generally set-up with the RUNtype but can be changed
if necessary.

Then choose the namelist file, and namelist options: model time step, forcing files informations, Cd for-
mulation (coupling with waves requires isftcflx=5, otherwise choose another Cd formulation, see WRF_IN/
README.namelist), domains informations.

Note: Other changes in the WRF namelist should be made “by hand” in the WRF_IN/namelist.input.
base.complete. Only settings into <. . .> in the namelist are automatically changed by the scripts

2.19. Coupling tutorial 329

Croco Documentation, Release 2.0.0

Namelist
#---------
#!!!!!!! IMPORTANT NOTE !!!!!!!
Changes of parameterizations, numerical schemes, etc in atmnamelist
should be made "by hand" in the WRF_IN/namelist.input.base.complete file
Only settings into <...> in WRF_IN/namelist.input.base.complete are␣
→˓automatically
filled in by the present mynamelist settings
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
export atmnamelist=namelist.input.base.complete

Time steps
#-----------
export DT_ATM=150

Boundaries
#-----------
export interval_seconds=21600 # interval (in sec) of the lateral input
export auxinput4_interval=360 # interval (in min) of bottom input
export nbmetsoil=4
export nbmetlevel=38

Physics
#--------
Cd formulation (default = 0, wave cpl needs = 5)
if [[$RUNtype =~ .*aw.* || $RUNtype =~ .*owa.*]] ; then

export isftcflx=5
else

export isftcflx=1
fi

Domains
#--------
export NB_dom=1 # Number of coupled domains
export wrfcpldom='d01' # which WRF domain to couple
export nestfeedback="TRUE" # 1 way (FALSE) or 2 Way (TRUE) nesting
export onlinecplmask="TRUE" # Erase existing CPLMASK and build default mask␣
→˓(depending on the nb of atm and oce domains)

Then a section when using moving nest is available. It is important to note that to use the moving nest
WRF has to be compiled with the moving nest option. In addition, in coupled mode, the moving nest can
be used, but only the parent static model can be coupled through OASIS. A dedicated Registry.EM is
available in WRF_IN/FOR_MOVING_NEST to compile WRF with moving nest + coupling so that the moving
nest receive surface updates from the parent static domain, that is coupled to the ocean or wave model. The
following section is used only if the moving nest is activated ATM_CASE="MOVING_NEST". In other case
keep ATM_CASE="DEFAULT", and ignore the rest of the section.

Moving nest
#------------
export ATM_CASE="DEFAULT" # no moving nest: DEFAULT or with: MOVING_NEST
if ATM_CASE=DEFAULT, the following is not used
export num_mv_nest=1 # number of moving nests
if several nest, the following variables need to have the format "1st_nest 2nd_
→˓nest"
export ref_coef="3" # refinement coef for nest
export ew_size="283" # nest size in east-west dim ([multiple of ref_coef] + 1)
export ns_size="295" # nest size in north-south dim ([multiple of ref_coef] + 1)

(continues on next page)

330 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

export i_prt_strt="580" # where nest is starting in parent's grid x-dim
export j_prt_strt="59" # where nest is starting in parent's grid y-dim
Tracking parameters
export vortex_interval=5 # When to update vortex position
export max_vortex_speed=40 # Used to compute the search radius for the new␣
→˓vortex center position
export corral_dist=8 # The closest distance between child and parend boundary␣
→˓(in parent grid cell)
export track_level=50000 # The pressure level (in Pa) where the vortex is tracked
export time_to_move=0 # The time (in minutes) until the nest is moved (at the␣
→˓beginning)

Then a section when using nudging (assimilation) is available. If not using nudging, ignore this section.

Nudging (assimilation) options
#-------------------------------
export switch_fdda=0 # To activate fdda nudging
export nudgedom="1" # select which kind of nudging you want (1=grid-nudging,␣
→˓2=spectral nudging) for each domain. Example for spectral nudging over parent␣
→˓only "2 0"
export nudge_coef="0.0003" # nudge coef. Need to be the same size than nudge
export nudge_interval_m="360" # time interval (in min) between analysis times
export nudge_end_h="144" # time (in hours) to stop nudging after start of␣
→˓forecast

Finally, set the ouptut settings:

Output settings
#----------------
#!!! WARNING: when XIOS is activated the following values (for the model) are␣
→˓not taken into account
export atm_his_h=6 # output interval (h)
export atm_his_frames=1000 # $((31*24)) # nb of outputs per file
export atm_diag_int_m=$((${atm_his_h}*60)) # diag output interval (m)
export atm_diag_frames=1000 # nb of diag outputs per file
file for specifying different than default output variables: OPTIONAL, leave␣
→˓empty if not used
export atm_iofields='myoutfields.txt'

• Now that you have completed the necessary files, you are ready to run your simulation. To do so, simply do

./submitjob.sh

Note: If using older versions of the wrf-croco fork than the latest tag, you may encounter issues regarding a
namelist variable named max_cpldom, which is present in the up-to-date version, but was inexistent in previous
version (with older version, you should remove this variable from your namelist.input.base.complete file). We
encourage to use the tagged up-to-date version.

2.19. Coupling tutorial 331

Croco Documentation, Release 2.0.0

2.19.4.5.3 CROCO-WW3

In your ${CHOME} repository you should have already filled in myenv_mypath.sh.

To prepare the run you need to modify the files myjob.sh and mynamelist.sh.

• In myjob.sh , you will have to fill in information about dates, job sequence:

Real job duration in sec (converted to MACHINE format in submit job)
export TIMEJOB=1800

#---
Run date settings
#---
Your run can be divided into several jobs (e.g.: 1 year run into 12 jobs of 1␣
→˓month)

Start date of the first Job
export YEAR_BEGIN_JOB=2005
export MONTH_BEGIN_JOB=1
export DAY_BEGIN_JOB=1

Duration of each Job
export JOB_DUR_MTH=1
export JOB_DUR_DAY=0

How many jobs do you want to launch?
export NBJOB=1

Do we start from a restart?
export RESTART_FLAG="FALSE"

Along with the number of cpu you will use for each model

nb of CPUs for each model
export NP_OCEX=2
export NP_OCEY=2
export NP_WAV=14

• In mynamelist.sh, first specify the run type, and the name of the experiment:

Run type (o/a/w, w.Afrc, oa, 2o1a, owa, owa.full...)
- Will select the models to use reading letters o/w/a/toywav/toyoce/toyatm
- Will select the executables, and some options (see in the following␣
→˓sections)
- In coupled mode corresponds to the suffix of the OASIS_IN/namcouple.base.
→˓$RUNtype to use
export RUNtype=ow
export MOD=`echo $RUNtype | cut -d . -f 1`

Name of the experiment you are about to launch (max 30. CHAR)
export CEXPER=BENGUELA_example_${RUNtype}

Then, there is a section indicating where the run will be executed and where the outputs and restarts will be
stored:

#---
RUN_DIR
#---

(continues on next page)

332 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

export EXEDIR_ROOT="$CWORK/rundir/${CEXPER}_execute"
export OUTPUTDIR_ROOT="$CWORK/rundir/${CEXPER}_outputs"
export RESTDIR_ROOT="$CWORK/rundir/${CEXPER}_restarts"

export JOBDIR_ROOT=${CHOME}/jobs_${CEXPER}

Then, there are sections for the different components.

For the coupler settings:

#---
CPL
#---

Namelist
#---------
Note: namelist example files are provided in OASIS_IN/
if you want to use a pre-built weight file for grid interpolations, point to
e.g. namcouple.base.oa.smtho2a
export namcouplename=namcouple.base.${RUNtype}

Coupling frequency
#-------------------
export CPL_FREQ=21600

Restart files for OASIS
#------------------------
If TRUE: create OASIS restart files from pre-existing atm/oce/wav outputs.
If FALSE: create OASIS restart files from calm conditions (need to read at␣
→˓least the grid for each model)
export CPL_restart="FALSE"
export oce_rst_file="${OCE_FILES_DIR}/croco_grd.nc"
export oce_rst_timeind=-1 # time index (-1 is last) in the file to extract as␣
→˓restart
export atm_rst_file="${ATM_FILES_DIR}/wrfinput_dXX_2005_01_01_00" # the domain␣
→˓dXX will be automatically replaced
export atm_rst_timeind=-1 # time index (-1 is last) in the file to extract as␣
→˓restart
export wav_rst_file="${WAV_FILES_DIR}/ww3.200501.nc"
export wav_rst_timeind=-1 # time index (-1 is last) in the file to extract as␣
→˓restart

You should check the coupling frequency, the restart flag and path towards model files to use to create oasis
restart files.

For CROCO settings, first indicate if you request CROCO compilation:

#---
OCE
#---

Where to find or put the croco execuatble
export OCE_EXE_DIR=${CHOME}/CROCO_IN

Online Compilation
#-------------------
#!!!!!!! IMPORTANT NOTE !!!!!!!

(continues on next page)

2.19. Coupling tutorial 333

Croco Documentation, Release 2.0.0

(continued from previous page)

If activated, creates croco executable depending on this namelist.
- In param.h it modifies the grid size, the number of procs in x and y␣
→˓direction with those given in myjob.sh
- In cppdefs.h it modifies the following options with informations given␣
→˓below
MPI, OA_COUPLING, OW_COUPLING, MRL_WCI,
XIOS, LOGFILE, MPI_NOLAND,
AGRIF, AGRIF_2WAY,
BULK_FLUX, ONLINE, AROME, ARPEGE, ERA_ECMWF
FRC_BRY, CLIMATOLOGY
TIDES, PSOURCE, PSOURCE_NCFILE, PSOURCE_NCFILE_TS
Other changes of parameterizations, numerical schemes, etc should be made "by␣
→˓hand" in CROCO_IN/cppdefs.h.base
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
export ONLINE_COMP=1

Then, edit model time steps:

Time steps
#-----------
export DT_OCE=3600
export NDTFAST=60

Then several options for zooms, wave coupling are provided. They are generally automatically set-up de-
pending on the RUNtype defined at the beginning.

Then, edit the options regarding the forcing files:

Forcings
#---------
export ini_ext='ini_SODA' # ini extension file (ini_SODA,...)
export bdy_ext='bry_SODA' # bry extension file (clm_SODA,bry_SODA,...)

flag for surface forcing should be true except in the case of atm coupling
if [[$MOD =~ .*a.*]] ; then

export surfrc_flag="FALSE"
else

export surfrc_flag="TRUE"
fi
export interponline=0 # switch (1=on, 0=off) for online surface interpolation.␣
→˓Only works with MONTHLY input files!
export frc_ext='blk_ERA5' # surface forcing extension(blk_ERA5, frc_ERA5,...).␣
→˓If interponline=1 precise the type (ERA_ECMWF or AROME, [CFSR by default],␣
→˓names as cppkey name in croco)

export tide_flag="FALSE" # the forcing extension must be blk_??? otherwise tide␣
→˓forcing overwrites it
export river_flag="FALSE"

Finally edit CROCO output settings:

Output settings
#----------------
#!!! WARNING: when XIOS is activated the following values (for the model) are␣
→˓not taken into account
export oce_his_sec=86400 # history output interval (in number of second)
export oce_avg_sec=86400 # average output interval (in number of second)

334 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

Then go to the WAVE model section:

#---
WAV
#---

Where to find the wav executable
if [[$RUNtype =~ .*owa.*]] ; then

export WAV_EXE_DIR=${WAV}/exe_owa
elif [[$RUNtype =~ .*ow.*]] ; then

export WAV_EXE_DIR=${WAV}/exe_ow
elif [[$RUNtype =~ .*aw.*]] ; then

export WAV_EXE_DIR=${WAV}/exe_aw
else

export WAV_EXE_DIR=${WAV}/exe_frc
fi

Namelist
#---------
Chosing the ww3_shel.inp.base.SHELL_EXT (see options in WW3_IN)
if [[$RUNtype =~ .*toy.*]] ; then

export SHELL_EXT=$MOD
else

export SHELL_EXT=$RUNtype
fi

First the paths for the executable are defined, and the ww3_shel namelist to use is defined. Those are generally
set-up with the RUNtupe but can be changed if necessary.

Then edit the ww3 time steps and grid settings (these will be updated in ww3_grid.inp):

Time steps
#-----------
export DT_WAV=3600 # TMAX = 3*TCFL
export DT_WW_PRO=1200 # TCFL = 0.8 x dx/(g/fmin4pi) with fmin=0.0373 => 3-4 %␣
→˓of dx
export DT_WW_REF=1800 # TMAX / 2
export DT_WW_SRC=10 # TSRC = usually 10s (could be between 5s and 60s)

Grid size
#----------
export wavnx=41 ; export wavny=42

Parameter
#----------
export hmin=75; # e.g. minimum water depth in CROCO (will be used to delimit␣
→˓coastline in WW3)

Then, choose the forcing to use for ww3:

Forcing files
#--------------
forcin: forcing file(s) PREFIX list (input file are supposed to be in the␣
→˓form: PREFIX_Y????M??.nc)
forcww3: name of ww3_prnc.inp extension, e.g current or wind/era5, see in WW3_
→˓IN directory
if [[$RUNtype =~ .*owa.*]]; then

export forcin=()
export forcww3=()

(continues on next page)

2.19. Coupling tutorial 335

Croco Documentation, Release 2.0.0

(continued from previous page)

elif [[$RUNtype =~ .*Afrc.* || $RUNtype =~ .*ow.*]] ; then
export forcin=(ERA5_wind)
export forcww3=(wind.era5)

elif [[$RUNtype =~ .*Ofrc.*]] ; then
export forcin=(CROCO_current CROCO_level)
export forcww3=(current level)

elif [[$RUNtype =~ .*frc.*]] ; then
export forcin=(ERA5_wind CROCO_current CROCO_level)
export forcww3=(wind.era5 current level)

fi

As well as the boundary data (can be left empty):

Boundary files
#---------------
prefix for boundary files (leave empty is none), there are supposed to be in␣
→˓WAV_FILES_DIR
export bouncin=

Finally, set output settings:

Output settings
#----------------
export wav_int=21600 # output interval (s)
export wav_pnt=0 # point output interval. Put 0 if no point output
export point_output_list=${WAV_FILES_DIR}/my_point_output_test.txt # file where␣
→˓to find list of point (format: lon lat name) to output spectrum
export wav_trck=0 # track output interval. Put 0 if no track output
export flagout="TRUE" # Keep (TRUE) or not (FALSE) the ww3 output binary files␣
→˓(e.g. out_grd.ww3)

• Now that you have completed the necessary files, you are ready to run your simulation. To do so, simply do

./submitjob.sh

2.19.4.5.4 CROCO-WW3-WRF

In your ${CHOME} repository you should have already filled in myenv_mypath.sh.

To prepare the run you need to modify the files myjob.sh and mynamelist.sh.

• In myjob.sh , you will have to fill in information about dates, job sequence:

Real job duration in sec (converted to MACHINE format in submit job)
export TIMEJOB=1800

#---
Run date settings
#---
Your run can be divided into several jobs (e.g.: 1 year run into 12 jobs of 1␣
→˓month)

Start date of the first Job
export YEAR_BEGIN_JOB=2005
export MONTH_BEGIN_JOB=1
export DAY_BEGIN_JOB=1

(continues on next page)

336 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

Duration of each Job
export JOB_DUR_MTH=1
export JOB_DUR_DAY=0

How many jobs do you want to launch?
export NBJOB=1

Do we start from a restart?
export RESTART_FLAG="FALSE"

Along with the number of cpu you will use for each model

nb of CPUs for each model
export NP_OCEX=2
export NP_OCEY=2
export NP_ATM=14
export NP_WAV=4

• In mynamelist.sh, first specify the run type, and the name of the experiment:

Run type (o/a/w, w.Afrc, oa, 2o1a, owa, owa.full...)
- Will select the models to use reading letters o/w/a/toywav/toyoce/toyatm
- Will select the executables, and some options (see in the following␣
→˓sections)
- In coupled mode corresponds to the suffix of the OASIS_IN/namcouple.base.
→˓$RUNtype to use
export RUNtype=owa
export MOD=`echo $RUNtype | cut -d . -f 1`

Name of the experiment you are about to launch (max 30. CHAR)
export CEXPER=BENGUELA_example_${RUNtype}

Then, there is a section indicating where the run will be executed and where the outputs and restarts will be
stored:

#---
RUN_DIR
#---

export EXEDIR_ROOT="$CWORK/rundir/${CEXPER}_execute"
export OUTPUTDIR_ROOT="$CWORK/rundir/${CEXPER}_outputs"
export RESTDIR_ROOT="$CWORK/rundir/${CEXPER}_restarts"

export JOBDIR_ROOT=${CHOME}/jobs_${CEXPER}

Then, there are sections for the different components.

For the coupler settings:

#---
CPL
#---

Namelist
#---------
Note: namelist example files are provided in OASIS_IN/

(continues on next page)

2.19. Coupling tutorial 337

Croco Documentation, Release 2.0.0

(continued from previous page)

if you want to use a pre-built weight file for grid interpolations, point to
e.g. namcouple.base.oa.smtho2a
export namcouplename=namcouple.base.${RUNtype}

Coupling frequency
#-------------------
export CPL_FREQ=21600

Restart files for OASIS
#------------------------
If TRUE: create OASIS restart files from pre-existing atm/oce/wav outputs.
If FALSE: create OASIS restart files from calm conditions (need to read at␣
→˓least the grid for each model)
export CPL_restart="FALSE"
export oce_rst_file="${OCE_FILES_DIR}/croco_grd.nc"
export oce_rst_timeind=-1 # time index (-1 is last) in the file to extract as␣
→˓restart
export atm_rst_file="${ATM_FILES_DIR}/wrfinput_dXX_2005_01_01_00" # the domain␣
→˓dXX will be automatically replaced
export atm_rst_timeind=-1 # time index (-1 is last) in the file to extract as␣
→˓restart
export wav_rst_file="${WAV_FILES_DIR}/ww3.200501.nc"
export wav_rst_timeind=-1 # time index (-1 is last) in the file to extract as␣
→˓restart

You should check the coupling frequency, the restart flag and path towards model files to use to create oasis
restart files.

For CROCO settings, first indicate if you request CROCO compilation:

#---
OCE
#---

Where to find or put the croco execuatble
export OCE_EXE_DIR=${CHOME}/CROCO_IN

Online Compilation
#-------------------
#!!!!!!! IMPORTANT NOTE !!!!!!!
If activated, creates croco executable depending on this namelist.
- In param.h it modifies the grid size, the number of procs in x and y␣
→˓direction with those given in myjob.sh
- In cppdefs.h it modifies the following options with informations given␣
→˓below
MPI, OA_COUPLING, OW_COUPLING, MRL_WCI,
XIOS, LOGFILE, MPI_NOLAND,
AGRIF, AGRIF_2WAY,
BULK_FLUX, ONLINE, AROME, ARPEGE, ERA_ECMWF
FRC_BRY, CLIMATOLOGY
TIDES, PSOURCE, PSOURCE_NCFILE, PSOURCE_NCFILE_TS
Other changes of parameterizations, numerical schemes, etc should be made "by␣
→˓hand" in CROCO_IN/cppdefs.h.base
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
export ONLINE_COMP=1

Then, edit model time steps:

338 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

Time steps
#-----------
export DT_OCE=3600
export NDTFAST=60

Then several options for zooms, wave coupling are provided. They are generally automatically set-up de-
pending on the RUNtype defined at the beginning.

Then, edit the options regarding the forcing files:

Forcings
#---------
export ini_ext='ini_SODA' # ini extension file (ini_SODA,...)
export bdy_ext='bry_SODA' # bry extension file (clm_SODA,bry_SODA,...)

flag for surface forcing should be true except in the case of atm coupling
if [[$MOD =~ .*a.*]] ; then

export surfrc_flag="FALSE"
else

export surfrc_flag="TRUE"
fi
export interponline=0 # switch (1=on, 0=off) for online surface interpolation.␣
→˓Only works with MONTHLY input files!
export frc_ext='blk_ERA5' # surface forcing extension(blk_ERA5, frc_ERA5,...).␣
→˓If interponline=1 precise the type (ERA_ECMWF or AROME, [CFSR by default],␣
→˓names as cppkey name in croco)

export tide_flag="FALSE" # the forcing extension must be blk_??? otherwise tide␣
→˓forcing overwrites it
export river_flag="FALSE"

Finally edit CROCO output settings:

Output settings
#----------------
#!!! WARNING: when XIOS is activated the following values (for the model) are␣
→˓not taken into account
export oce_his_sec=86400 # history output interval (in number of second)
export oce_avg_sec=86400 # average output interval (in number of second)

Then continue with the atmospheric model section:

#---
ATM
#---

Where to find the atm exectuable
if [[$RUNtype =~ .*a.* && ($RUNtype =~ .*o.* || $RUNtype =~ .*w.*)]] ; then

export ATM_EXE_DIR=${ATM}/exe_coupled
else

export ATM_EXE_DIR=${ATM}/exe_uncoupled
fi

First the paths for the executable are defined. Those are generally set-up with the RUNtype but can be changed
if necessary.

Then choose the namelist file, and namelist options: model time step, forcing files informations, Cd formu-
lation (coupling with waves requires isftcflx=5), domains informations.

2.19. Coupling tutorial 339

Croco Documentation, Release 2.0.0

Note: Other changes in the WRF namelist should be made “by hand” in the WRF_IN/namelist.input.
base.complete. Only settings into <. . .> in the namelist are automatically changed by the scripts

Namelist
#---------
#!!!!!!! IMPORTANT NOTE !!!!!!!
Changes of parameterizations, numerical schemes, etc in atmnamelist
should be made "by hand" in the WRF_IN/namelist.input.base.complete file
Only settings into <...> in WRF_IN/namelist.input.base.complete are␣
→˓automatically
filled in by the present mynamelist settings
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
export atmnamelist=namelist.input.base.complete

Time steps
#-----------
export DT_ATM=150

Boundaries
#-----------
export interval_seconds=21600 # interval (in sec) of the lateral input
export auxinput4_interval=360 # interval (in min) of bottom input
export nbmetsoil=4
export nbmetlevel=38

Physics
#--------
Cd formulation (default = 0, wave cpl needs = 5)
if [[$RUNtype =~ .*aw.* || $RUNtype =~ .*owa.*]] ; then

export isftcflx=5
else

export isftcflx=1
fi

Domains
#--------
export NB_dom=1 # Number of coupled domains
export wrfcpldom='d01' # which WRF domain to couple
export nestfeedback="TRUE" # 1 way (FALSE) or 2 Way (TRUE) nesting
export onlinecplmask="TRUE" # Erase existing CPLMASK and build default mask␣
→˓(depending on the nb of atm and oce domains)

Then a section when using moving nest is available. It is important to note that to use the moving nest WRF
has to be compiled with the moving nest option. In addition, in coupled mode, the moving nest can be used,
but only the parent static model can be coupled through OASIS. A dedicated Registry.EM is available in
WRF_IN to compile WRF with moving nest + coupling so that the moving nest receive surface updates from
the parent static domain, that is coupled to the ocean or wave model. The following section is used only if
the moving nest is activated ATM_CASE="MOVING_NEST". In other case keep ATM_CASE="DEFAULT", and
ignore the rest of the section.

Moving nest
#------------
export ATM_CASE="DEFAULT" # no moving nest: DEFAULT or with: MOVING_NEST
if ATM_CASE=DEFAULT, the following is not used
export num_mv_nest=1 # number of moving nests
if several nest, the following variables need to have the format "1st_nest 2nd_

(continues on next page)

340 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

→˓nest"
export ref_coef="3" # refinement coef for nest
export ew_size="283" # nest size in east-west dim ([multiple of ref_coef] + 1)
export ns_size="295" # nest size in north-south dim ([multiple of ref_coef] + 1)
export i_prt_strt="580" # where nest is starting in parent's grid x-dim
export j_prt_strt="59" # where nest is starting in parent's grid y-dim
Tracking parameters
export vortex_interval=5 # When to update vortex position
export max_vortex_speed=40 # Used to compute the search radius for the new␣
→˓vortex center position
export corral_dist=8 # The closest distance between child and parend boundary␣
→˓(in parent grid cell)
export track_level=50000 # The pressure level (in Pa) where the vortex is tracked
export time_to_move=0 # The time (in minutes) until the nest is moved (at the␣
→˓beginning)

Then a section when using nudging (assimilation) is available. If not using nudging, ignore this section.

Nudging (assimilation) options
#-------------------------------
export switch_fdda=0 # To activate fdda nudging
export nudgedom="1" # select which kind of nudging you want (1=grid-nudging,␣
→˓2=spectral nudging) for each domain. Example for spectral nudging over parent␣
→˓only "2 0"
export nudge_coef="0.0003" # nudge coef. Need to be the same size than nudge
export nudge_interval_m="360" # time interval (in min) between analysis times
export nudge_end_h="144" # time (in hours) to stop nudging after start of␣
→˓forecast

Finally, set the ouptut settings:

Output settings
#----------------
#!!! WARNING: when XIOS is activated the following values (for the model) are␣
→˓not taken into account
export atm_his_h=6 # output interval (h)
export atm_his_frames=1000 # $((31*24)) # nb of outputs per file
export atm_diag_int_m=$((${atm_his_h}*60)) # diag output interval (m)
export atm_diag_frames=1000 # nb of diag outputs per file
file for specifying different than default output variables: OPTIONAL, leave␣
→˓empty if not used
export atm_iofields='myoutfields.txt'

Then continue with the wave model section:

#---
WAV
#---

Where to find the wav executable
if [[$RUNtype =~ .*owa.*]] ; then

export WAV_EXE_DIR=${WAV}/exe_owa
elif [[$RUNtype =~ .*ow.*]] ; then

export WAV_EXE_DIR=${WAV}/exe_ow
elif [[$RUNtype =~ .*aw.*]] ; then

export WAV_EXE_DIR=${WAV}/exe_aw
else

(continues on next page)

2.19. Coupling tutorial 341

Croco Documentation, Release 2.0.0

(continued from previous page)

export WAV_EXE_DIR=${WAV}/exe_frc
fi

Namelist
#---------
Chosing the ww3_shel.inp.base.SHELL_EXT (see options in WW3_IN)
if [[$RUNtype =~ .*toy.*]] ; then

export SHELL_EXT=$MOD
else

export SHELL_EXT=$RUNtype
fi

First the paths for the executable are defined, and the ww3_shel namelist to use is defined. Those are generally
set-up with the RUNtupe but can be changed if necessary.

Then edit the ww3 time steps and grid settings (these will be updated in ww3_grid.inp):

Time steps
#-----------
export DT_WAV=3600 # TMAX = 3*TCFL
export DT_WW_PRO=1200 # TCFL = 0.8 x dx/(g/fmin4pi) with fmin=0.0373 => 3-4 %␣
→˓of dx
export DT_WW_REF=1800 # TMAX / 2
export DT_WW_SRC=10 # TSRC = usually 10s (could be between 5s and 60s)

Grid size
#----------
export wavnx=41 ; export wavny=42

Parameter
#----------
export hmin=75; # e.g. minimum water depth in CROCO (will be used to delimit␣
→˓coastline in WW3)

Then, choose the forcing to use for ww3:

Forcing files
#--------------
forcin: forcing file(s) PREFIX list (input file are supposed to be in the␣
→˓form: PREFIX_Y????M??.nc)
forcww3: name of ww3_prnc.inp extension, e.g current or wind/era5, see in WW3_
→˓IN directory
if [[$RUNtype =~ .*owa.*]]; then

export forcin=()
export forcww3=()

elif [[$RUNtype =~ .*Afrc.* || $RUNtype =~ .*ow.*]] ; then
export forcin=(ERA5_wind)
export forcww3=(wind.era5)

elif [[$RUNtype =~ .*Ofrc.*]] ; then
export forcin=(CROCO_current CROCO_level)
export forcww3=(current level)

elif [[$RUNtype =~ .*frc.*]] ; then
export forcin=(ERA5_wind CROCO_current CROCO_level)
export forcww3=(wind.era5 current level)

fi

As well as the boundary data (can be left empty):

342 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

Boundary files
#---------------
prefix for boundary files (leave empty is none), there are supposed to be in␣
→˓WAV_FILES_DIR
export bouncin=

Finally, set output settings:

Output settings
#----------------
export wav_int=21600 # output interval (s)
export wav_pnt=0 # point output interval. Put 0 if no point output
export point_output_list=${WAV_FILES_DIR}/my_point_output_test.txt # file where␣
→˓to find list of point (format: lon lat name) to output spectrum
export wav_trck=0 # track output interval. Put 0 if no track output
export flagout="TRUE" # Keep (TRUE) or not (FALSE) the ww3 output binary files␣
→˓(e.g. out_grd.ww3)

• Now that you have completed the necessary files, you are ready to run your simulation. To do so, simply do

./submitjob.sh

2.19.4.6 Outputs, logs

Once your job is launched, two repositories should appear:

• ${CHOME}/job_${CEXPER}

• ${CWORK}/rundir

${CHOME}, ${CWORK} being variables you specified in myenv_mypath.sh. The first is where jobs and logs are
put. The second is where your job is running and where outputs/restarts are stored:

• ${CEXPER}_execute: running directory, here you can find all the files used to run your simulation

• ${CEXPER}_output: output directory, here you should find the output of the different models if the run was
successful

• ${CEXPER}_restart: restart directory, here you should find the restarts files, they are used for the next job
if RESTART_FLAG is set to True.

In those repositories, you will find one folder per job. Meaning if the simulation is 12 jobs long, you will have 12
folders named with dates of each job.

In case of error during your job, check the log files in: ${CHOME}/job_${CEXPER} for the job log, or in ${CWORK}/
rundir/${CEXPER}_execute for the model and oasis logs:

• out_run.txt: general log

• rsl.error.0000 rsl.out.0000 rsl.error.000* rsl.out.000*: WRF logs

• croco.log: CROCO log

• grid.out ounf.out prnc.wind.out strt.out log.ww3: WW3 logs

• nout.000000 debug.root.01 debug.root.02: OASIS logs

Typical issues that you can encounter are:

• Files not found: check your file names, paths, check myenv_mypath.sh, mynamelist.sh

• Inconsistency in exchanged variables: check OASIS namcouple, especially variable names

• Inconsistent dimensions of the grids of the different files: check the model grid files, the OASIS grids and
masks files, the OASIS remapping weight files, as well as the models and OASIS namelists. NB: OASIS

2.19. Coupling tutorial 343

Croco Documentation, Release 2.0.0

grids, masks and rmp* files are not recomputed if they already exist in your directory (make sure to clean in
case of error)

• Model blow up: check the model log files. If blow up is due to CFL issue (unrealistic speed, or segmentation
fault), decrease the model time step in mynamelist.sh but be careful to keep consistency between the
coupling time step and model time steps (they should be multiples)

2.20 Littoral dynamics tutorial

Note: This configuration is based on Rip Current test case

The aim of this tutorial is to investigate gradually the capability of CROCO to deal with the nearshore dynamics.
It is built on some test-cases that are packaged within the CROCO release and will be thoroughly analysed. The
various aspects that will be adressed are the following :

• Compute a test-case,

• Modify a test-case (including a new bathymetry, modifying the forcings, . . .),

• Use of the CROCO embedded WKB wave model,

• Parametrisation of the Bottom Boundary Layer combining wave and circulation,

• Account for the sediment compartment,

• Morphodynamics.

The tutorial is based on the Rip Current, Sandbar, Plannar Beach, Swash test cases. For a description of the
wave-averaged equations and WKB wave model see Wave-averaged Equations.

Rip currents are strong, seaward flows forced by longshore variation of the wave-induced momentum flux. They
are responsible for the recirculation of water accumulated at a beach by a weaker and broader shoreward flow due
to Stokes drift.

Here, we consider longshore variation of the wave-induced momentum flux due to breaking at barred bottom
topography with an imposed longshore perturbation, as in Yu [2003] or Weir et al. [2011]. The basin is rectangular
(768 m by 768 m) and the topography is constant over time and based on field surveys at Duck, North Carolina.
Shore-normal, monochoromatic waves (1m, 10s) are imposed at the offshore boundary and propagate through the
WKB wave model coupled with the 3D circulation model [Uchiyama et al., 2010]. The domain is periodic in the
alongshore direction. We assume that the nearshore boundary is reflectionless, and there is no net outflow at the
offshore boundary.

The tutorial starts by implementing and running the Rip Current test case. It can be activated with the cpp key RIP
that can be followed throughout the source code to gather the main informations about the setup. The following
figure picke up in Yu [2003] shows what the bathymetry looks for.

Answer the basic following questions in order to charaterize the set up:

• what is that analytical formulation of the topography, the basin size, the resolution

• characterize the wave forcing

• what are the interaction between wave and currents

• what is the formulation of the drag coefficient

Related CPP options:

344 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

RIP Idealized Duck Beach with 3D topography (default)
BISCA Semi-realistic Biscarosse Beach (needs input files)
RIP_TOPO_2D Idealized Duck with longshore uniform topography
GRANDPOPO Idealized longshore uniform terraced beach (Grand Popo, Benin)
ANA_TIDES Adds idealized tidal variations
WAVE_MAKER & NBQ Wave resolving rather than wave-averaged case (#undef MRL_WCI)

CPP options:

define RIP

undef OPENMP
undef MPI
define SOLVE3D
define NEW_S_COORD
define UV_ADV
define BSTRESS_FAST
undef NBQ
ifdef NBQ
define NBQ_PRECISE
define WAVE_MAKER
define WAVE_MAKER_SPECTRUM
define WAVE_MAKER_DSPREAD
define UV_HADV_WENO5
define UV_VADV_WENO5
define W_HADV_WENO5
define W_VADV_WENO5
define GLS_MIXING_3D
undef ANA_TIDES

(continues on next page)

2.20. Littoral dynamics tutorial 345

Croco Documentation, Release 2.0.0

(continued from previous page)

undef MRL_WCI
define OBC_SPECIFIED_WEST
define FRC_BRY
define ANA_BRY
define Z_FRC_BRY
define M2_FRC_BRY
define M3_FRC_BRY
define T_FRC_BRY
define AVERAGES
define AVERAGES_K
else
define UV_VIS2
define UV_VIS_SMAGO
define LMD_MIXING
define LMD_SKPP
define LMD_BKPP
define MRL_WCI
endif
define WET_DRY
ifdef MRL_WCI
define WKB_WWAVE
define WKB_OBC_WEST
define WAVE_ROLLER
define WAVE_FRICTION
define WAVE_FRICTION
define WAVE_STREAMING
define MRL_CEW
ifdef RIP_TOPO_2D
define WAVE_RAMP
endif
endif
ifndef BISCA
define ANA_GRID
endif
define ANA_INITIAL
define ANA_SMFLUX
define ANA_STFLUX
define ANA_SSFLUX
define ANA_SRFLUX
define ANA_SST
define ANA_BTFLUX
if !defined BISCA && !defined ANA_TIDES
define NS_PERIODIC
else
define OBC_NORTH
define OBC_SOUTH
endif
define OBC_WEST
define SPONGE
ifdef ANA_TIDES
define ANA_SSH
define ANA_M2CLIMA
define ANA_M3CLIMA
define ZCLIMATOLOGY
define M2CLIMATOLOGY
define M3CLIMATOLOGY

(continues on next page)

346 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

define M2NUDGING
define M3NUDGING
endif
ifdef BISCA
define BBL
endif
undef SEDIMENT
ifdef SEDIMENT
define ANA_SEDIMENT
undef ANA_SPFLUX
undef ANA_BPFLUX
endif
undef DIAGNOSTICS_UV

2.21 Realistic coastal configuration

Warning: This part is only given as an example of coastal configuration in tidal environment. So you have an
example of which set of cpp keys to use

The VILAINE case is an example of a realistic coastal configuration taking into account :

• Tidal circulation

• Wet/dry areas

• River outflows

• Sediment dynamic with MUSTANG

The configuration is included in CROCO as a reference coastal case (see cppdefs.h)

All inputs files can be found there :

https://data-croco.ifremer.fr/CONFIGS_EXAMPLES/Run_VILAINE.tar.gz

2.22 XIOS

As a start point for this tutorial, we will use the BASIN test case (see section 5.1)

cd ~/CONFIGS/BASIN

Is everything ok ? Compiling ? Running ? Are the 2 files basin_rst.nc and basin_his.nc created ?

What is the walltime (or real time)?
Now add the XIOS functionnality in the croco executable:
If the XIOS is installed on your target machine (it is the case on Datarmor), there are only 2 new simple steps to
follow :

1. Edit cppdef.h:

Need to define 2 news cpp keys fot this test case:

/*
! Basin Example
! ===== =======

(continues on next page)

2.21. Realistic coastal configuration 347

https://data-croco.ifremer.fr/CONFIGS_EXAMPLES/Run_VILAINE.tar.gz

Croco Documentation, Release 2.0.0

(continued from previous page)

*/
define XIOS
undef OPENMP
.....

2. Edit the compilation script jobcomp:

Need to add the XIOS library path

#
set XIOS directory if needed
#
XIOS_ROOT_DIR=$HOME/xios-2.5
#

For this tutorial, we need to comment three lines (217, 218 and 219) in jobcomp:

$CPP1 -P -traditional -imacros cppdefs.h ${ROOT_DIR}/XIOS/field_def.
→˓xml_full $RUNDIR/field_def.xml
$CPP1 -P -traditional -imacros cppdefs.h ${ROOT_DIR}/XIOS/domain_def.
→˓xml $RUNDIR/domain_def.xml
$CPP1 -P -traditional -imacros cppdefs.h ${ROOT_DIR}/XIOS/iodef.xml
→˓$RUNDIR/iodef.xml

For this tutorial, we need to modify the routine send_xios_diags.F :

cp ~/croco/croco/XIOS/send_xios_diags.F .

Edit send_xios_diags.F and comment lines 2077, 2078 and 2133:

! call xios_send_field("uwnd",uwnd)
! call xios_send_field("vwnd",vwnd)

! call xios_send_field("bvf",bvf)

Compile the model again:

./jobcomp

Before running the model with XIOS module, we need three xml files (field_def.xml, domain_def.xml and
iodef.xml):

cp /home/datawork-croco/datarmor-only/CONFIGS/TUTO20/BASIN_WITH_XIOS/field_def.xml .
cp /home/datawork-croco/datarmor-only/CONFIGS/TUTO20/BASIN_WITH_XIOS/domain_def.xml .
cp /home/datawork-croco/datarmor-only/CONFIGS/TUTO20/BASIN_WITH_XIOS/iodef.xml.
→˓OneFile iodef.xml

Have a look at iodef.xml file :

• selected fields to output,

• output frequency output_freq,

• what kind of output (instantaneous, average) operation,

• . . .

At the end of the iodef.xml file, look at the line

<variable id="using_server" type="bool">false</variable>

348 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

The boolean false means that croco will run with XIOS in “attached mode”. Each computing processor will
write in the output file. In this “attached mode”, XIOS behaves like a netcdf4 layer.

In this iodef.xml file, the configuration for outputs is the same as in croco.in file.

Run the model in “attached mode”:

qsub job_croco_mpi.pbs

Compare the new file Basin_Example_10d_inst_0001-01-01-0001-04-30.nc with the previous one
basin_his.nc :

ncview basin_his.nc & ; ncview Basin_Example_10d_inst_0001-01-01-0001-04-30.nc

Note: If your output file start with a ?, it is due to a tab before the configuration title in croco.in: Basin Example.
Just replace the tab by a blank space.

–> For large configuration, XIOS is very efficient in netcdf parallel writting.

Edit iodef.xml file and add new 2D and 3D fields to be written in the output file by uncommenting lines :

<field field_ref="w" name="w" />
<field field_ref="salt" name="salt" />
<field field_ref="sustr" name="sustr" />
<field field_ref="svstr" name="svstr" />
<field field_ref="rho" name="rho" />

Run the model:

qsub job_croco_mpi.pbs

Have a look at the new file Basin_Example_10d_inst_0001-01-01-0001-04-30.nc

Add an extra file for average output in editing iodef.xml (or you can get an example there):

cp /home/datawork-croco/datarmor-only/CONFIGS/TUTO20/BASIN_WITH_XIOS/iodef.xml.
→˓Twofiles iodef.xml

Have a look at the iodef.xml file to understand how to simply add a new output file

run the model:

qsub job_croco_mpi.pbs

Have a look at the new netcdf file Basin_Example_5d_aver_0001-01-01-0001-04-30.nc

What is the walltime (or real time)?

Run the model in “detached mode”:
Edit iodef.xml and modify boolean at ``true`` in line:

<variable id="using_server" type="bool">true</variable>

The boolean true means that croco will run with XIOS in “detached mode”. Each computing processor will
send fields to one or several XIOS servers which will be in charge of writing the outputs files.
Edit job_croco_mpi.pbs to add one XIOS server

##PBS -l select=1:ncpus=28:mpiprocs=4:mem=8g
#PBS -l select=1:ncpus=28:mpiprocs=5:mem=8g

(continues on next page)

2.22. XIOS 349

Croco Documentation, Release 2.0.0

(continued from previous page)

#time $MPI_LAUNCH croco croco.in >& croco.out
time $MPI_LAUNCH -n 4 croco croco.in : -n 1 xios_server.exe >& croco.out

There will be 4 computing processors sending fields to 1 xios server writting in output files.

Run the model:

qsub job_croco_mpi.pbs

Theorically, computing processors will run faster (keep in mind that reading and writting files is slow, comput-
ing is fast!).
What is the walltime (or real time)?

Is it worth to use detached mode in this case?

Adding an online dignostic using ONLY xios:
In the output file, we need to have a new variable computed from already defined variables. For instance, we want
to have zeta*zeta . . .

Edit field_def.xml and add the new variable zeta2:

<field id="zeta" long_name="free-surface" unit="meter" />
<field id="zeta2" long_name="squared free-surface" unit="meter2" > (zeta*zeta) </
→˓field>

Then edit iodef.xml and add the new variable to be written in the output file:

<field_group id="inst_fields" operation="instant">
<field field_ref="zeta" name="zeta" />
<field field_ref="zeta2" name="zeta2" />

No need to compile, just run the model:

qsub job_croco_mpi.pbs

If you have time, add xios in the previous BENGUELA_LR

cd $confs/Run_BENGUELA_LR
cp /home/datawork-croco/datarmor-only/CONFIGS/TUTO20/BENGUELA_LR_XIOS/* .

Compile once:

./jopbcomp

Run :

qsub job_croco_mpi.pbs

Explore files, edit and modify iodef.xml, and run again . . .

350 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.23 Tips

2.23.1 Tips in case of errors during compilation

1. In case of strange errors during compilation (*e.g. “catastrophic error: could not find . . . ”), try one of these
solutions*

• check your home space is not full ;-)

• check your paths to compilers and libraries (especially Netcdf library)

• check that you have the good permissions, and check that your executable files (configure, make. . .) do
are executable

• check that your shell scripts headers are correct or add them if necessary (e.g. for bash: #!/bin/bash)

• try to exit/log out the machine, log in back, clean and restart compilation

2. Errors and tips related to netcdf library

• with netcdf 4.3.3.1: need to add the following compilation flag for all models: -mt_mpi

The error associated to a missing -mt_mpi flag is of this type: “
/opt/intel//impi/4.1.1.036/intel64/lib/libmpi_mt.so.4: could not read symbols: Bad value “

• with netcdf 4.1.3: do NOT add -mt_mpi flag

• with netcdf4, need to place hdf5 library path in your environment:

export LD_LIBRARY_PATH=YOUR_HDF5_DIR/lib:$LD_LIBRARY_PATH

• with netcdf 4, if you use the library splitted in 2: C part and Fortran part, you need to place links
to C library before links to Fortran library and need to put both path in this same order in your
LD_LIBRARY_PATH

3. In case of ‘segmentation fault’ error

• try to allocate more memory with “unlimited -s unlimited”

• try to launch the compilation as a job (batch) with more allocated memory

4. relocation truncated to fit: R_X86_64_32S against symbol at compilation in sequential mode

• add option mcmodel=large in compile options (FLAGS) in jobcomp

5. m2c error at the beginning of the compilation

• the path to OCEAN directory in the jobcomp file may be wrong

2.23.2 TIPS for errors at runtime

2.23.2.1 Tips in case of BLOW UP or ERROR

• Check your time steps

• Eventually increase NDTFAST and/or decrease the baroclinic time step

• Check the location of your boundaries (in particular if your blow up point is located close to them): it should
not be placed on a too strong topographic gradient, or coastline particular shape (it is usually better to have
a boundary normally crossing the coastline)

• Check the thickness and value of the sponge

2.23. Tips 351

Croco Documentation, Release 2.0.0

2.23.2.2 Others possible errors

• If at runtime you got an error in reading bathymetry variable H (code -57)

::
you may ask for too many cpus in MPI compared to the size of your grid

• XIOS

Warning: The output time step in XIOS must be a multiple of the 3D time step in croco

2.23.3 Analytical forcing

Some advices and tips on how to use the model with analytical forcings

1. How to unplug atmospherical forcing

In cppdefs.h you should undefine BULK_FLUX and add some keys

#undef BULK_FLUX
#define ANA_SSFLUX
#define ANA_STFLUX
#define ANA_SMFLUX
#define ANA_SRFLUX

2. Set analytical boundary conditions

• Edit cppdefs.h

DEFINE ANA_BRY

• Edit analytical.F routine and set your own OBC for zeta,Ubar,Vbar,U,V,T,S

2.24 CROCO/MUSTANG tutorial & tips

2.24.1 Get to know the CROCO/MUSTANG coupling

Read the documentation on CROCO/MUSTANG (MUSTANG Sediment model)

Note: The MUSTANG learning curve is a steep one. Understanding the documentation strongly benefits from
reading the code itself.

Note: In this tutorial $croco refers to the main directory of CROCO source code

352 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.24.2 Run a test case

• Choose a test case (Sediment test cases)

• Copy the various configuration files that you need

cp -r $croco/MUSTANG/MUSTANG_NAMELIST/ ./MUSTANG_NAMELIST
cp -r $croco/TEST_CASES/ ./TEST_CASES
cp $croco/OCEAN/cppdefs.h .
cp $croco/OCEAN/param.h .
cp $croco/OCEAN/Makefile .
cp $croco/OCEAN/jobcomp .

– Modify your jobcomp to point to the location of your CROCO source code

– Edit the cppdefs.h file, e.g.:

define DUNE
define MUSTANG

Make sure MUSTANG is activated. For some test cases SEDIMENT (USGS sediment model) is acti-
vated by default in cppdefs.h.

2.24.3 Create your own configuration

1. First choice: V1 or V2 ?

If you need bedload - you dont’t have the choice:

define key_MUSTANG_V2

What MUSTANG V2 has to offer:

• Bedload

• A new conceptual model for sediment mixture erosion

• A new model to compute porosity

http://www.ifremer.fr/docmars/html/doc_MUSTANG/doc.MUSTANG.process.html

2. Modify the param.h file

• Define the number of substances ntrc_subs

• Define the number of layers ksdmin,*ksdmax*

3. Create your SUBSTANCE & MUSTANG input files

• Write down the name and location of your files in the croco.in file

• Create the substance file by copying parasubstance_MUSTANG_full_example.txt. Keep only the
sections that matter (e.g. don’t keep a listing of sand and gravel parameters if your run only includes
muds). Remember that the number of variables should correspond to ntrc_subs in param.h

• Create a user-defined MUSTANG namelist by copying the default one (paraMUSTANG_default.txt).
Keep only the parameters that matter for your configuration. If MUSTANG does not find a parameter
in the user-defined namelist file, it will use the value defined in the default namelist file.

4. Modify the cppdefs.h file

Choose what you want to model with the main CPP keys:

• Without special CPP key, the model is morpho-static. The seabed evolution does not impact the
bathymetry seen by the ocean model. If you want do to morphodynamics run:

2.24. CROCO/MUSTANG tutorial & tips 353

http://www.ifremer.fr/docmars/html/doc_MUSTANG/doc.MUSTANG.process.html

Croco Documentation, Release 2.0.0

define MORPHODYN

Plus, you will have to put l_morphocoupl=.true. in paraMUSTANG*.txt

• Sand transported in suspension in 3D (no CPP key needed) : that might be very cost effective for
regional scale modelling (i.e. if your CROCO time step is large compared to the time step needed to
guarantee the stability of the explicit settling scheme). Sand transported in suspension in pseudo 2D

define key_sand2D
define MUSTANG_CORFLUX

Warning: If you want to add a source of sand (e.g. rivers) with the pseudo-2D scheme, it has not
been tested yet. Most probably your discharge will only be a fraction of what you wanted. You will
need to either adjust the concentration or to modify step3D_t.F in the following section to sum up
the water column fluxes in the bottom layer:

!--
! Apply point sources for river runoff simulations
!--

5. CROCO/MUSTANG CPP keys

• Read wave files:

define WAVE_OFFLINE

Activates the reading of wave data (this is an existing CROCO CPP option). If combined with #define
MUSTANG, it reads significant wave height, wave period, wave direction and bottom orbital velocity.
Then the wave-induced bottom shear stress is computed in sed_MUSTANG_CROCO.F90. Note that
the significant wave height (or wave amplitude) has to be given as for now but is not used to compute
the bed shear stress.

Header of an example wave file:

dimensions:
wwv_time = UNLIMITED ; // (2586 currently)
eta_rho = 623 ;
xi_rho = 821 ;

variables:
double wwv_time(wwv_time) ;
double hs(wwv_time, eta_rho, xi_rho) ;

hs:_FillValue = -32767. ;
double t01(wwv_time, eta_rho, xi_rho) ;

t01:_FillValue = -32767. ;
double dir(wwv_time, eta_rho, xi_rho) ;

dir:_FillValue = -32767. ;
double ubr(wwv_time, eta_rho, xi_rho) ;

ubr:_FillValue = -32767. ;

• Read netcdf files for solid discharge in river:

define PSOURCE_NCFILE
define PSOURCE_NCFILE_TS

It reads the concentration values in get_psource_ts.F

Header of an example source file:

354 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

dimensions:
qbar_time = 7676 ;
n_qbar = 6 ;
runoffname_StrLen = 30 ;
temp_src_time = 8037 ;
salt_src_time = 8037 ;
MUD1_src_time = 7676 ;

variables:
double qbar_time(qbar_time) ;

qbar_time:long_name = "runoff time" ;
qbar_time:units = "days" ;
qbar_time:cycle_length = 0 ;
qbar_time:long_units = "days since 1900-01-01" ;

double Qbar(n_qbar, qbar_time) ;
Qbar:long_name = "runoff discharge" ;
Qbar:units = "m3.s-1" ;

char runoff_name(n_qbar, runoffname_StrLen) ;
double temp_src_time(temp_src_time) ;

temp_src_time:cycle_length = 0 ;
temp_src_time:long_units = "days since 1900-01-01" ;

double salt_src_time(salt_src_time) ;
salt_src_time:cycle_length = 0 ;
salt_src_time:long_units = "days since 1900-01-01" ;

double temp_src(n_qbar, temp_src_time) ;
temp_src:long_name = "runoff temperature" ;
temp_src:units = "Degrees Celcius" ;

double salt_src(n_qbar, salt_src_time) ;
salt_src:long_name = "runoff salinity" ;
salt_src:units = "psu" ;

double MUD1_src_time(MUD1_src_time) ;
MUD1_src_time:long_name = "runoff time" ;
MUD1_src_time:units = "days" ;
MUD1_src_time:long_units = "days since 1900-01-01" ;

double MUD1_src(n_qbar, MUD1_src_time) ;

6. Initial conditions for the sediment cover

There are mainly 2 options:

• Uniform sediment cover

In paraMUSTANG*.txt:

l_unised = .true. ! boolean set to true for a uniform bottom␣
→˓initialization
fileinised = './Init.nc' ! File for initialisation (if l_unised is False)
hseduni = 0.03 ! initial uniform sediment thickness(m)
cseduni= 1500.0 ! initial sediment concentration
csed_mud_ini = 550.0 ! mud concentration into initial sediment (if =0.␣
→˓==> csed_mud_ini=cfreshmud)
ksmiuni = 1 ! lower grid cell indices in the sediment
ksmauni = 10 ! upper grid cell indices in the sediment

And then, the fraction of each sediment variable in the seafloor is defined with cini_sed_n() in para-
subsance_MUSTANG.txt

• Read the sediment cover from a netcdf file or restart from a RESTART file

In paraMUSTANG*.txt:

2.24. CROCO/MUSTANG tutorial & tips 355

Croco Documentation, Release 2.0.0

l_repsed=.true. ! boolean set to .true. if sedimentary variables are␣
→˓initialized from a previous run
filrepsed='./repsed.nc' ! file from which the model is initialized for the␣
→˓continuation of a previous run

The netcdf file needs to have the concentration values under the names NAME_sed, with NAME
corresponding to the names defined in the SUBSTANCE input files. The number of vertical levels
(ksmi, ksma) and the layer thickness (DZS) also need to be defined. The file structure is similar to the
RESTART netcdf file, and filerepsed can be used to restart from a CROCO RESTART file.

Header of an example sediment cover file:

dimensions:
ni = 821 ;
nj = 623 ;
time = UNLIMITED ; // (1 currently)

level = 10 ;
variables:

double latitude(nj, ni) ;
double longitude(nj, ni) ;
double time(time) ;
double level(level) ;
double ksmi(time, nj, ni) ;
double ksma(time, nj, ni) ;
double DZS(time, level, nj, ni) ;
double temp_sed(time, level, nj, ni) ;
double salt_sed(time, level, nj, ni) ;
double GRAV_sed(time, level, nj, ni) ;
double SAND_sed(time, level, nj, ni) ;
double MUD1_sed(time, level, nj, ni) ;

Alternatively there is a 3rd option possible. If l_repsed=.false. and l_unised=.false., you can specify the
filename of your sediment cover dataset (fileinised), but then it is up to you to write yourself the piece of
code to read it in initMUSTANG.F90 in the subroutine MUSTANG_sedinit.

How to prescribe the concentration for the initialisation :

• Uniform sediment cover. If you use a uniform sediment cover, the initial fraction of each sediment class
is read in parasubastance_MUSTANG.txt. Then the concentration of each sediment class is a fraction of
cseduni defined in paraMUSTANG.txt (i.e. cv_sed(iv)=cini_sed_n(iv) x cseduni). However, since you pre-
scribe cseduni, it is not necessarily similar to what the model total concentration should be for the same
sediment mixture, unless you used the same porosity model as in MUSTANG to compute cseduni.

With MUSTANG V2, after initialisation, the sediment concentration is adjusted in every layers to match
the model porosity law. Hence the initial mass is not preserved, but the bed height and the sediment class
fractions are.

With MUSTANG V1, by default the sediment concentration is not adjusted. In this case, what will happen
is that the first time erosion happens, the very first deposit could have a very different porosity to the initial
state, and induce an abrupt bed height change. You can select l_init_hsed=.true. to bypass this issue. While
adjusting the sediment concentration, it will also adjust the sediment height to conserve the initial mass.

Note: With MUSTANG V2 we recommend using l_init_hsed=.false. since the subroutine associated with
this boolean uses the porosity model of V1.

• RESTART. If you use l_repsed=.true., l_init_hsed is not even read. In V1, the sediment concentrations
that you specify will not be overwritten. It means that you have to start with concentrations that follow the
porosity law of the model. In V2, concentrations are overwritten in all layers after computing the porosity

356 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

for the sediment mixture. In this cas you can specify concentration that are just a fraction of an arbitrary
constant total sediment concentration.

Warning: In version 1, you can impose no sediment in a grid cell by imposing ksmi=1 and ksma=0. This
could be useful to define reefs for instance. In Version 2 you need at least one sediment layer everywhere.
The first layer is never eroded, but is needed to manage the small sediment mass that can be left in the
layer just above. To avoid potential issue when computing concentrations for very thin layers, thin layers
are merged with underlying layers. Therefore, when initializing sediment concentrations make sure to
have at least one layer everywhere.

2.25 TRAINING 2019: DATARMOR specific

2.25.1 Getting the good environment

Warning: This is specific to DATARMOR cluster used for this training; if you are working on you own
computer, follow the System Requirements and Downloading the code tutorials to download the code, and
set-up your environment

An environment script has been created for this training on DATARMOR. It will load the necessary modules and
set some useful paths and environment variables. Copy this croco_env.csh script and source it. If you already have
a .cshrc or .tcshrc or .bashrc environment script, please copy it to .chsrc.bck to avoid overdefinitions and use only
croco_env.csh during the training period.

cd $HOME
cp /home/datawork-croco/datarmor-only/TRAININGS/TRAINING_2019/croco_env.* .
source croco_env.csh

Now the $CROCO_DIR environment variable is defined and you will find useful material for this training in this
directory.

2.25.2 Creating your work architecture

Let’s work on your WORKDIR to avoid disk space issues.

cd $work
mkdir TRAINING_2019
cd TRAINING_2019
mkdir croco
mkdir CONFIGS

cp -r $CROCO_DIR/SOURCE_CODES/CROCO/croco_git/croco croco/.
cp -r $CROCO_DIR/SOURCE_CODES/CROCO/croco_git/croco_tools croco/.

If you have followed this architecture, the following environment variables have also been placed to facilitate
navigation:

• $croco point to your croco sources: $work/TRAINING_2019/croco/croco

• $tools point to your croco sources: $work/TRAINING_2019/croco/croco_tools

• $confs point to your croco sources: $work/TRAINING_2019/CONFIGS

Investigate by your own the various directories.

2.25. TRAINING 2019: DATARMOR specific 357

Croco Documentation, Release 2.0.0

Warning: do not modify any of the files contained in your source directories $croco and $tools to keep your
source files clean; modifications should be perfomed in your configuration directories (as we will see later)

2.25.3 DATA FILES

Datasets for preparing surface and boundary conditions from climatological dataset can be downloaded on CROCO
website. For this training you will find them in $CROCO_DIR/DATA/DATASETS_CROCOTOOLS ; otherwise see the
Download tutorial.

You can also find the following global atmospheric reanalysis in $CROCO_DIR/DATA/
METEOROLOGICAL_FORCINGS/:

• ERAI

• CFSR

And the following ocean reanalysis in $CROCO_DIR/DATA/3D_OCEAN_FORCING:

• SODA

• ECCO2

2.25.4 BASIN configuration for XIOS tutorial

cp -R /home/datawork-croco/datarmor-only/CONFIGS/TUTO20/BASIN_NO_XIOS/* $confs/BASIN
cd $confs/BASIN

Path for XIOS sources:

::
XIOS_ROOT_DIR=/home/datawork-croco/datarmor-only/SOURCE_CODES/XIOS/XIOS-2.5

2.25.5 SOURCES for coupling tutorial

For DATARMOR training, OASIS has already been compiled, so you can just copy the sources and compiled files

mkdir -p $work/TRAINING_2019/oasis
cp -r $CROCO_DIR/SOURCE_CODES/OASIS/OASIS3-MCT_3.0_branch_compiled $work/TRAINING_
→˓2019/oasis/OASIS3-MCT_3.0_branch

The configure file for compiling OASIS on DATARMOR, named make.datarmor can be found here

$CROCO_DIR/make.datarmor

For DATARMOR training, WRF has been compiled, and you can just copy the source and compiled files

mkdir -p $work/TRAINING_2019/wrf
cp -r $CROCO_DIR/SOURCE_CODES/WRF/WRFV3.7.1_compiled $work/TRAINING_2019/wrf/WRFV3.7.1

A job for compilation is also provided

::
$CROCO_DIR/job_compile_wrf.pbs

For DATARMOR training, WPS has been compiled, and you can just copy the source and compiled files

cp -r $CROCO_DIR/SOURCE_CODES/WRF/WPSV3.7.1 $work/TRAINING_2019/wrf/.

358 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

For DATARMOR training, these data are avaiable in $CROCO_DIR/SOURCE_CODES/WRF/geog.

For DATARMOR training, CFSR data for WRF are available in $CROCO_DIR/DATA/
METEOROLOGICAL_FORCINGS/CFSR/GLOBAL/NATIVE_format

For DATARMOR training, WW3 has been compiled, and you can just copy the source and compiled files

mkdir -p $work/TRAINING_2019/ww3
cp -r $CROCO_DIR/SOURCE_CODES/WW3/github/WW3_compiled/* $work/TRAINING_2019/ww3/.

For DATARMOR training, TOY model files are provided here:

cp $CROCO_DIR/SOURCE_CODES/TOY/toy_compiled/toy_model $confs/Run_BENGUELA_LR_cpl/.

cp $CROCO_DIR/DATA/BENGUELA_CPL/toy_files/* $confs/Run_BENGUELA_LR_cpl/.

You should now have the following new files in your configuration directory:

• toy_model

• grid_wav.nc

• TOYNAMELIST.nam

• toy_wav.nc

An example of fulfilled namcouple is also provided in $CROCO_DIR/DATA/BENGUELA_CPL/oasis_files

Note: Documentation on PBS use on DATARMOR can be found here: https://w3z.ifremer.fr/intraric/
Mon-IntraRIC/Calcul-et-donnees-scientifiques/Datarmor-Calcul-et-Donnees/Datarmor-calcul-et-programmes

2.26 Ifremer specific

This tutorial is written in the Framework of the supercomputer (DATARMOR) located at Ifremer. It’s also a guide
for those who are working with MARS3D model and who want to make their configurations with CROCO

2.26.1 Croco training in the framework of datarmor

2.26.1.1 First step :install

2.26.1.1.1 Getting the good environment

Warning: This is specific to DATARMOR cluster used for this training; if you are working on you own
computer, follow the System Requirements and Downloading the code tutorials to download the code, and
set-up your environment

An environment script has been created for this training on DATARMOR. It will load the necessary modules and
set some useful paths and environment variables. Copy this croco_env.csh script and source it. If you already have
a .cshrc or .tcshrc or .bashrc environment script, please copy it to .chsrc.bck to avoid overdefinitions and use only
croco_env.csh during the training period.

cd $HOME
cp /home/datawork-croco/datarmor-only/TRAININGS/TRAINING_2021/croco_env.* .
source croco_env.csh

2.26. Ifremer specific 359

https://w3z.ifremer.fr/intraric/Mon-IntraRIC/Calcul-et-donnees-scientifiques/Datarmor-Calcul-et-Donnees/Datarmor-calcul-et-programmes
https://w3z.ifremer.fr/intraric/Mon-IntraRIC/Calcul-et-donnees-scientifiques/Datarmor-Calcul-et-Donnees/Datarmor-calcul-et-programmes

Croco Documentation, Release 2.0.0

Now the $CROCO_DIR environment variable is defined and you will find useful material for this training in this
directory.

2.26.1.1.2 Creating your work architecture

Let’s work on your WORKDIR to avoid disk space issues.

cd $work
mkdir TRAINING_2021
cd TRAINING_2021
mkdir croco
mkdir CONFIGS

cp -r $CROCO_DIR/../../SOURCE_CODES/CROCO/croco_git/croco_master/croco croco/.
cp -r $CROCO_DIR/../../SOURCE_CODES/CROCO/croco_git/croco_tools croco/.

If you have followed this architecture, the following environment variables have also been placed to facilitate
navigation:

• $croco point to your croco sources: $work/TRAINING_2021/croco/croco

• $tools point to your croco sources: $work/TRAINING_2021/croco/croco_tools

• $confs point to your croco sources: $work/TRAINING_2021/CONFIGS

Warning: do not modify any of the files contained in your source directories $croco and $tools to keep your
source files clean; modifications should be perfomed in your configuration directories (as we will see later)

1. Investigate by your own the various directory below ./croco

AGRIF : AGRIF refinement library
CVTK : to check mpi reproductibility
OCEAN : sources code themselves
PISCES : biogeochemical code
Run/TEST_CASES : the crocos.in for the various test_cases
XIOS : input-ouput server that can be coupled to croco
etc ...

2.26.1.2 Second step: launch a test case

BASIN

2.26.1.3 Third step: set up your own test case

Set up you own test case

360 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

2.26.1.4 REALISTIC CONFIGURATION

2.26.1.4.1 Example of coastal configuration

The VILAINE case is an example of a realistic coastal configuration taking into account :

• Tidal circulation

• Wet/dry areas

• River outflows

• Sediment dynamic with MUSTANG

The configuration is included in CROCO as a reference coastal case (see cppdefs.h)

1. Set the environment

source ~/croco_env.sh

2. Create a configuration directory:

mkdir $confs/VILAINE

3. Copy the input files for compilation from croco sources:

cd $confs/VILAINE
cp $croco/OCEAN/cppdefs.h .
cp $croco/OCEAN/param.h .
cp $croco/OCEAN/jobcomp .

4. Edit cppdefs.h for using BASIN case

define COASTAL

undef REGIONAL

You can also explore the CPP options selected for VILAINE case.

• which physical parametrizations ?

• which advection schemes ?

You can check the VILAINE settings in param.h:

• Dimension of the grid ?

• Number of vertical levels ?

5. Edit the compilation script jobcomp:

see BASIN

6. Get the inputs files for the run

cp /home/datawork-croco/public/ftp/CONFIGS_EXAMPLES/VILAINE/croco.in .
cp -r /home/datawork-croco/public/ftp/CONFIGS_EXAMPLES/VILAINE/CROCO_FILES .

Take a look of the input files in CROCO_FILES and check if it’s filled out correctly in croco.in file

7. Get the namelist for MUSTANG module

cp -r /home/datawork-croco/public/ftp/CONFIGS_EXAMPLES/VILAINE/MUSTANG_NAMELIST .

8. Compile the model in MPI with 28 cpus

• Edit the param.h file to choose the number of cpus

2.26. Ifremer specific 361

Croco Documentation, Release 2.0.0

• Check if MPI is activated for the VILAINE case in cppdefs.h

define MPI

• Get the compile batch script and compile

cp $CROCO_DIR/batch_comp_datarmor .
qsub batch_comp_datarmor

• Get the run script to submit your job on Datarmor

cp $CROCO_DIR/job_croco_mpi.pbs .
qsub job_croco_mpi.pbs

9. Assign a new fill value to land mask cells

• copy scalars.h

cp $croco/OCEAN/scalars.h .

• edit the file and replace spval

spval=999.

• add CPP key FILLVAL in your cppdefs.h

define FILLVAL

• add this key in cppdefs.h` to not add bathymetry on wet dry cells

define ZETA_DRY_IO

2.26.1.4.2 Build a configuration from scratch

2.26.1.4.2.1 Preparation of forcing files

2.26.1.4.2.2 Mesh building with BMGTOOLS

1. Get BMGTOOLS here

mkdir BMG
cp /home/datawork-mars/TOOLS/BATHY/BMGTOOLS/bmg-linux64b-rev1489.tar.gz .
tar -xzvf bmg-linux64b-rev1489.tar.gz

2. Open the Create module in a terminal

cd create_bmg-5.0.0
./CreateBMG.sh

Warning: If a memory is requested put 4GO

3. Get the appropriate coastline to build your configuration here

/home/datawork-croco/datarmor-only/DATA/COASTLINE/BMGTOOLS_FORMAT/france.line
/home/datawork-croco/datarmor-only/DATA/COASTLINE/BMGTOOLS_FORMAT/europa.closed.
→˓line
/home/datawork-croco/datarmor-only/DATA/COASTLINE/BMGTOOLS_FORMAT/med_sea.line

362 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

4. Create a new project (Top left button)

5. Create a grid with the following features (Button on the top right bar) and follow the instructions

• Click and drag on the map to define approximatively your domain

• In the popup window you can define :

– The limits of your area of interest

– If you want to choose your grid resolution by meters choose the option Grid defined by curvilin-
ear mesh size

6. Save your project and check in the directory that you have a file head.TEST with the features of your grid

TEST0 65.0000000 40.0000000 15.0000000 -20.0000000 0.0500000 0.0833333 ␣
→˓ 5662.40 5563.84 421 501 167 158 190 180 TEST

7. Interpolation of the bathymetry on the grid

• Get the fortran executable, the associated namelist and the batch

/home/datawork-mars/TOOLS/BATHY/INTERP/interp_bathy/INTERP_BATHY.exe
/home/datawork-mars/TOOLS/BATHY/INTERP/interp_bathy/namelist
/home/datawork-mars/TOOLS/BATHY/INTERP/interp_bathy/batch_interp

• Build a text file which list the MNT files you want to use and pickup from here

cat catalog.dat :
/home/datawork-croco/datarmor-only/DATA/MNT_HOMONIM/MNT_ATL100m_HOMONIM_
→˓WGS84_NM.nc

• Edit the namelist

2.26. Ifremer specific 363

Croco Documentation, Release 2.0.0

Choose the grid2grid mode
&flags
l_interp_soundings2grid=.false.
l_interp_grid2grid=.true.
l_smooth=.false.
l_connect=.false. /

&interp_soundings2grid
coastfile='/home/datawork-croco/datarmor-only/DATA/TDC/france.line'

&interp_grid2grid
data_catalog='catalog.cat'
l_bathy_bmg=.true.
l_closed_line=.true.
landvalue=-999
grid_file='RootGrid.nc'
nivmoypath=''
l_bathy_threshold=.true.
bathy_threshold=2.0
mask_method='HXHY' /

• Launch the executable

qsub batch_interp

8. Open in another terminal the Check BMG module to view and edit (if needed) your bathymetry

• Open

cd check_bmg-5.0.0
./CheckBMG.sh

• Load your grid file (RootGrid.nc) and your coastline file

• You can edit your grid with the button in the top right pannel with different ways

– Single (one mesh)

– Sequential (several meshes in sequential)

– Polygon (group of meshes within a polygon)

– Rectangle (groupe meshes within a rectangle)

You juste have to select the nodes and edit the bathymetry values

364 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

Warning: dont forget to save your project to take into acount your modifications

9. Convert the bathymetry and the grid to CROCO framework

Preprocessing of files are based on a set of python scripts.

On Datarmor you can get a python with vacumm

2.26. Ifremer specific 365

Croco Documentation, Release 2.0.0

module load vacumm/3.4.0

• Get the python script from CROCO directory

cp -r /home/datawork-croco/datarmor-only/TRAININGS/TRAINING_2021/MARS2CROCO/
→˓BATHY .
cd BATHY

• Edit the python script convert_bathymars2croco.py and set user parameters

• Launch the script

python convert_bathymars2croco.py bathy_file.nc

==> You get croco_grd.nc

• Check if your bathy seems ok

ncview croco_grd.nc

2.26.1.4.2.3 Build tidal atlas on CROCO grid

To get tide on your OBC, you need an atlas with harmonic constituents on your model grid croco_grd.nc
• First you also need the following script

cp /home/datawork-croco/datarmor-only/TRAININGS/TRAINING_2021/MARS2CROCO/TIDES/
→˓convert_fes2croco.py .
cp /home/datawork-croco/datarmor-only/TRAININGS/TRAINING_2021/MARS2CROCO/TIDES/
→˓tides.txt .
cp /home/datawork-croco/datarmor-only/TRAININGS/TRAINING_2021/batch_python .

• Edit the python script to set the list of constituents you want in your Atlas

• The script need the croco_grd.nc file so you need to link it the directory

ln -s ../BATHY/croco_grd.nc .

• Run the script

qsub batch_python

2.26.1.4.2.4 3D Initial and Boundary conditions

This part deals with generation of OBC and IC for your grid, from an Ocean General Circulation Model (exemple
:MERCATOR, HYCOM ..)

1. First you have to get the numerical solution which covers your grid and your period of simulation

/home/datawork-croco/datarmor-only/DATA/MERCATOR_SOLUTION

2. The second step is to interpolate this file on your grid. We use a fortran programm for this :

• Get the following directory

cp -r /home/datawork-croco/datarmor-only/TRAININGS/TRAINING_2021/EXTRACT_
→˓CROCO .
cd EXTRACT

366 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

• Edit the namelist

vi IN/namelist

• Change the mode (IC or OBC at once)

&extractmode
l_extract_obc=.false. ! compute Open Boundaries Conditions (set to␣

→˓true)
l_extract_ic=.false. / ! compute Initial Conditions (set to␣

→˓true)

• Change the name of the input file with the MERCATOR file

&namcoarse
file_coarse = 'MERCATOR_PSY2V4.nc' ! name of file containing data to be␣

→˓interpolated

• In this section set the name of init and obc file, input bathy file and activate which obc you want to
extract

&namfine
head_fine = 'head.useless' ! head.CONF file (a line of the one␣

→˓used in MARS)
file_ic='init.nc' ! name of ic output file
file_fine_w = 'obc_west.nc' ! name of west obc output file
file_fine_e = 'obc_east.nc' ! name of east obc output file
file_fine_s = 'obc_south.nc' ! name of south obc output file
file_fine_n = 'obc_north.nc' ! name of north obc output file
l_obc_west = .false. ! Interpolate west obc ?
l_obc_east = .false. ! Interpolate east obc ?
l_obc_south = .false. ! Interpolate south obc ?
l_obc_north = .false. ! Interpolate north obc ?
obc_width = 2 ! width of obc domain, must the same␣

→˓than in MARS
file_bathy_fine = 'bathy_rang1_2500_final.nc'

• Adpat the parameters for interpolation :

– Set l_interpxyz to .false. ==> it enables 2D interpolation with SCRIP and vertical interpolation
with splines

– If your OGCM model is in SIGMA coordinates set your own intermediate Z vertical profile (used
for vertical interpolation sigma to sigma)

Z=(0:immersion1:dh1_ref,immersion1:immersion2:dh2_ref,
→˓immersion2:immersion3:dh3_ref)

¶m_interp
l_interpxyz = .false. !
rapdist = 6.0 ! only if l_interpxyz=.true. must be <= 6
radius = 20.0e+3 ! only if l_interpxyz=.true.
aspect_ratio = 10 ! only if l_interpxyz=.true.
dh1_ref=1.0 ! only if OGCM in Sigma (dz between 0 and␣

→˓immersion1)
immersion1 =40.0 ! only if OGCM in Sigma (first immersion␣

→˓below 0 in z profil)
dh2_ref= 2.0 ! only if OGCM in Sigma (dz between␣

→˓immersion1 and immersion2)
(continues on next page)

2.26. Ifremer specific 367

Croco Documentation, Release 2.0.0

(continued from previous page)

immersion2 =60.0 ! only if OGCM in Sigma (second immersion␣
→˓in z profil)

dh3_ref=5.0 ! only if OGCM in Sigma (dz between␣
→˓immersion2 and immersion3)

immersion3=200.0 ! only if OGCM in Sigma (last immersion in␣
→˓z profil : must be >= MAX(H0) !!!)

nextrap = 10 ! 2D spatial extrapolation iteration
l_correct_rho=.false. ! correct vertical density␣

→˓instabilities
l_complete_prof_first=.false. ! extrapolate Z profils before doing␣

→˓interpolation
l_interp_conserv=.true. / ! perform conservative vericale␣

→˓interpolation instead of splines

– Launch the executable in batch mode

qsub batch_extract

2.26.1.4.2.5 Build a new configuration with CROCO

Open a terminal and login to Datarmor

ssh -X login@datarmor

2.26.1.4.2.6 Environment and source code

1. Setup environment

• Source this file to set some environment variables

cd $HOME
cp /home/datawork-croco/datarmor-only/TRAININGS/TRAINING_2021/croco_env.* .
source croco_env.csh

• Build a “CROCO” directory on your $DATAWORK

cd $work
mkdir TRAINING_2021
cd TRAINING_2021
mkdir croco
mkdir CONFIGS

2. Get the source code

cp -r $CROCO_DIR/../../SOURCE_CODES/CROCO/croco_git/croco_master/croco croco/.
cp -r $CROCO_DIR/../../SOURCE_CODES/CROCO/croco_git/croco_tools croco/.

3. Create a new config

• Build a directory for your new configuration and get the following scripts from the source code directory

cd $confs
mkdir my_config
cd my_config
mkdir CROCO_FILES

(continues on next page)

368 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

(continued from previous page)

cp $croco/OCEAN/param.h .
cp $croco/OCEAN/cppdefs.h .
cp $croco/OCEAN/jobcomp .
cp $CROCO_DIR/job* .

2.26.1.4.2.7 Edit your configuration parameters files

1. Setup param.h
• First section : define your domain dimensions (get xi_rho and eta_rho from croco_grd.nc)

LLm0 = xi_rho-2 ; MMm0=eta_rho-2

#elif defined REGIONAL
elif defined SEINE

parameter (LLm0=410, MMm0=180, N=20) ! SEINE

• Second section : define your MPI decomposition

Choose your decomposition so number_procs=NP_XI*NP_ETA

#ifdef MPI
integer NP_XI, NP_ETA, NNODES
parameter (NP_XI=14, NP_ETA=6, NNODES=NP_XI*NP_ETA)

• If you are using WET_DRY set the critical depth

#ifdef WET_DRY
real D_wetdry ! Critical Depth for Drying cells

else
parameter (D_wetdry=0.4)

• Third section :: Number of harmonic components

#else
parameter (Ntides=114)

• Fourth section :: Number of river

#if defined PSOURCE || defined PSOURCE_NCFILE
integer Msrc ! Number of point sources
parameter (Msrc=9) ! ====== == ===== =======

#endif

2. Edit cppdef.h : Simple config with only tides at boundaries

• Activate REGIONAL case

#define REGIONAL /* REGIONAL Applications */

• Set configuration name (same as param.h)

/* Configuration Name */
define MEDI5KM

• Set MPI parallelisation

2.26. Ifremer specific 369

Croco Documentation, Release 2.0.0

define MPI

• Activate TIDES and define Open boundary conditions according to your domain

/* Open Boundary Conditions */
define TIDES
undef OBC_EAST
define OBC_WEST
define OBC_NORTH
undef OBC_SOUTH

• In preselected options only change these ones :

– vertical mixing

/* Vertical Mixing */
define GLS_MIXING

– Analytical surface fluxes

/* Surface Forcing */
undef BULK_FLUX
/* Suppression des termes atmospheriques */
define ANA_SSFLUX /* analytical salinity flux */
define ANA_STFLUX /* analytical Latent and Sensible flux */
define ANA_SMFLUX /* surface momentum flux = wind */
define ANA_SRFLUX /* surface short surface radiative */
define ANA_SST /* climatological surface temperature */
define ANA_SSS /* climatological surface salinity */
undef ANA_TCLIMA /* climatological surface for others tracers */

– Lateral Forcing

/* Lateral Forcing */
undef CLIMATOLOGY
define ANA_INITIAL
define ANA_BRY
define FRC_BRY
ifdef FRC_BRY
define Z_FRC_BRY
define M2_FRC_BRY
undef M3_FRC_BRY
undef T_FRC_BRY
endif

– Bottom Forcing

/* Bottom Forcing */
define ANA_BSFLUX
define ANA_BTFLUX

– Desactivate source

/* Point Sources - Rivers */
undef PSOURCE
undef PSOURCE_NCFILE
ifdef PSOURCE_NCFILE
define PSOURCE_NCFILE_TS
endif

370 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

3. Compile the model in batch mode

• Edit your job comp and set the source code path

SOURCE=$croco/OCEAN

• Launch the compilation

qsub job_comp_datarmor.pbs

Note: you should get a croco executable file

4. Edit the config input file croco.in
• Time stepping

time_stepping: NTIMES dt[sec] NDTFAST NINFO
594000 40 10 1

– NTIMES : Number of global time step (dt)

you can use this script to get NTIMES given your start and end date

/home/datawork-croco/datarmor-only/FORMATION/PREPROC/calc_steps.py
Duration of your simulation == NTIMES*dt

– dt : baroclinic time step (depend on your mesh grid size)

– NDTFAST : number of fast time step in one baroclinic time step

• Sigma distribution

S-coord: THETA_S, THETA_B, Hc (m)
0.0d0 0.0d0 2000.0d0

• Origin date (only) for Netcdf

start_date:
01-01-1900 00:00:00

• Set the path to your inputs files which should be in a CROCO_FILES directory

grid: filename
CROCO_FILES/croco_grd.nc

forcing: filename
CROCO_FILES/croco_frc_manga16.nc

bulk_forcing: filename
CROCO_FILES/bidon.nc

climatology: filename
CROCO_FILES/croco_clm.nc

boundary: filename
CROCO_FILES/croco_bry.nc

initial: NRREC filename
-1

CROCO_FILES/croco_ini.nc
restart: NRST, NRPFRST / filename

9000 -2
CROCO_FILES/croco_rst.nc

history: LDEFHIS, NWRT, NRPFHIS / filename
T 90 0

(continues on next page)

2.26. Ifremer specific 371

Croco Documentation, Release 2.0.0

(continued from previous page)

CROCO_FILES/croco_his.nc
averages: NTSAVG, NAVG, NRPFAVG / filename

1 2140 0
CROCO_FILES/croco_avg.nc

• Choose which variables you want to save in your output (T/F to activate/desactivate)

primary_history_fields: zeta UBAR VBAR U V wrtT(1:NT)
T F F T T 30*T

auxiliary_history_fields: rho Omega W Akv Akt Aks Visc3d Diff3d HBL␣
→˓HBBL Bostr Wstr Ustr Vstr Shfl Swfl rsw rlw lat sen HEL

F F F F F F F F F ␣
→˓F F F F F F F 10*F
gls_history_fields: TKE GLS Lscale

F F F

primary_averages: zeta UBAR VBAR U V wrtT(1:NT)
F F F F F 30*T

auxiliary_averages: rho Omega W Akv Akt Aks Visc3d Diff3d HBL HBBL␣
→˓Bostr Wstr Ustr Vstr Shfl Swfl rsw rlw lat sen HEL

F F F F F F F F F F F ␣
→˓ F F F F F 10*F
gls_averages: TKE GLS Lscale

F F F

• Set lateral viscosity (ONLY if UV_VIS2 or UV_VIS4 cpp key are enabled)

lateral_visc: VISC2, VISC4 [m^2/sec for all]
6.34 0.

• Set lateral diffusivity (ONLY if UV_DIFF2 or UV_DIFF4 cpp key are enabled)

tracer_diff2: TNU2(1:NT) [m^2/sec for all]
30*1.d-2

tracer_diff4: TNU4(1:NT) [m^4/sec for all]
30*0.d11

• Set bottom drag

bottom_drag: RDRG [m/s], RDRG2, Zob [m], Cdb_min, Cdb_max
0.0d-4 5.d-3 3.5d-3 1.d-4 1.d-1

– Barotropic mode :: RDRG superseded by RDRG2

– Baroclinc mode :: RDRG superseded by RDRG2 superseded by Z0B

5. Edit batch_mpt to set the right number of nodes and walltime (1node=28 procs)

#PBS -q mpi_3
#PBS -l mem=8gb
#PBS -l walltime=10:00:00
#PBS -N CROCO_SEINE

6. Launch the model

qsub batch_mpt

7. Visualize

372 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

• First use ncview

module load ncview
ncview CROCO_FILES/croc_his.nc

2.26.1.4.2.8 Custom you configuration

2.26.1.4.2.9 Add a source for a river discharge

• In cppdefs.h you should activate

– PSOURCE : activate tracer for sources

– PSOURCE_NCFILE : if you want to use a chronological discharge (dont use it for now)

/* Point Sources - Rivers */
define PSOURCE
undef PSOURCE_NCFILE
ifdef PSOURCE_NCFILE
define PSOURCE_NCFILE_TS
endif

• In param.h set the number of source points

#if defined PSOURCE || defined PSOURCE_NCFILE
integer Msrc ! Number of point sources
parameter (Msrc=5) ! ====== == ===== =======

#endif

• Compile your model

• Edit croco.in file

First line is for the number of sources then there should be one line by source

psource: Nsrc Isrc Jsrc Dsrc Qbar [m3/s] Lsrc Tsrc
1

310 23 0 -900. T T 0. 0.

– Isrc,Jsrc : Coordinates of point sources

– Dsrc : Direction of outflow (0 along u, 1 along v)

– Qbar : Average discharge in m3/s (positive to the North/East, negative to the South/West)

– Lsrc : Logical for associate tracers to the source (here Temp,Sal)

– Tsrc : Tracer value (here Temp,Sal)

2.26.1.4.2.10 Add a real Atmospheric forcing

• In cppdefs.h you should activate * ONLINE : Use online interpolation (spatial and temporal) from an meteo
model on different grid * AROME : data are formatted in MeteoFrance framework * BULK_FLUX : Compute
bulk fluxes

– BULK_FAIRALL : use FAIRALL formulation for bulk

– BULK_SMFLUX : compute surface momentum flux (from wind stress)

– READ_PATM : Read atmospherical pressure in atm file and use it in the code for bulk and surface
pressure gradient

2.26. Ifremer specific 373

Croco Documentation, Release 2.0.0

define BULK_FLUX
ifdef BULK_FLUX
define BULK_FAIRALL
undef BULK_LW
undef BULK_EP
define BULK_SMFLUX
ifdef BULK_SMFLUX
define BULK_SM_UPDATE
endif
undef SST_SKIN
undef ANA_DIURNAL_SW
define ONLINE
define AROME
define READ_PATM
undef ERA_ECMWF
undef RELATIVE_WIND
else
undef QCORRECTION
undef SFLX_CORR
undef ANA_DIURNAL_SW
endif

– Dont forget to remove analytical bulk fluxes

/* Suppression des termes atmospheriques */
define ANA_SSFLUX /* surface salinity */
define ANA_STFLUX /* surface temperature */
undef ANA_SMFLUX /* surface momentum flux = wind */
undef ANA_SRFLUX /* surface short surface radiative */
define ANA_SST
define ANA_SSS

• Recompile the model

• Go to your configuration directory and make a link to this file

::
cd /home1/datawork/login/CROCO/config cd CROCO_FILES ln -s /home/datawork-croco/datarmor-
only/DATA/METEOROLOGICAL_FORCINGS/ARPEGE-HR_2017_final.nc .

• Now edit the croco.in file (see bottom of file)

Set begin year, end year and mont, number of records per day in your dataset and the path of the file

online: byear bmonth recordsperday byearend bmonthend / data path
2017 1 24 2017 12
CROCO_FILES/ARPEGE-HR_2017_final.nc

2.26.1.4.2.11 Add 3D IC and OBC

• First you need to get your IC and OBC files see 3D Initial and Boundary conditions

• Edit cppdefs.h to activate BRY conditions:

– undefine analytical Init and boundary conditions

– activate BRY for Tracers (T_FRC_BRY)

374 Chapter 2. Tutorials

Croco Documentation, Release 2.0.0

undef ANA_INITIAL
undef ANA_BRY
define FRC_BRY
ifdef FRC_BRY
define Z_FRC_BRY
define M2_FRC_BRY
undef M3_FRC_BRY
undef T_FRC_BRY
endif

• Compile the model

• Copy you croco_ic.nc and croco_bry.nc files in the CROCO_FILES diretory

• Edit croco.in file

Set the path to your IC/OBC files

boundary: filename
CROCO_FILES/croco_bry.nc

initial: NRREC filename
-1

CROCO_FILES/croco_ini.nc

Note: When you start from an init file the start date of your simulation is the date of the file

2.26.1.5 FERRET FACILITY

Ferret : a practical tool for fast visualisation on datarmor
this step is dedicated to basic git usage to manage properly your source code and (potentially) interact with croco’s
developers the croco’s repository is so far hosted at Inria (https://gitlab.inria.fr)

1. Load the appropriate module

module avail
module load ferret/7.1__64b

Launch it by typing

ferret

2. Load your netcdf dataset (yes? is the usual prompt)

yes? use data.nc

or

yes? use "/home6/datawork/login/Simulation/data.nc"

3. Visualise the data structure

yes? show data

you will get a list of all the variables contained in the fill loaded and their dimensions :

• i : designate the x dimension

• j : designate the y dimension

2.26. Ifremer specific 375

https://gitlab.inria.fr

Croco Documentation, Release 2.0.0

• k : designate the vertical dimension

• l : designate the temporal dimension

4. List the numerical values of a section of a given variable :

From now on let’s consider the variable temp which gets four dimensions (time + x,y,z).

yes? list /i=10/j=10/k=40 temp

This will list all the numerical data at the level 40, i=10, j=10 of the variable temp.

5. Plot a one dimensionnal feature by fixing n-1 of the variable dimension number (n).

yes? plot /i=10/j=10/k=40 temp

this will plot the time series of the variable temp.

yes? plot /i=10/j=10/l=4 temp

this will plot the vertical profile of the variable temp at time l=4.

yes? plot /i=10/j=10/l=4 temp
yes? plot /i=10/j=10/l=40/ove temp

the same as the previous but with superimposition of two profile at two different instants (l=10 and l=40)

6. Plot a two dimensionnal features by fixing n-2 of the variable dimension number (n).

yes? plot /i=10/j=10 temp

This will plot a Hovmuller diagram (time vs z) of the variable temp.

yes? plot /k=40/j=10 temp

In case, k=40 designate the surface layer, this will plot a hovemuller diagram along all longitudes vs time.

yes? plot /k=40/j=10/lev=(10.,20.,1.) temp

The same as the previous one but setting a color bar that extends from 10 to 20 with bins of 1.

yes? plot /k=40/j=10/lev=(0)(10.,20.,1.)(30) temp

The same as the previous one but extending the first and last color class respectively down to 0 and up to 30.

2.26.1.6 GIT FACILITY

Manage coherently your configurations/developments with git
This step is dedicated to basic git usage to manage properly your source code and (potentially) interact with croco’s
developers the croco’s repository is so far hosted at Inria (https://gitlab.inria.fr)

1. Request an access to croco’s gitlab

go to URL https://gitlab.inria.fr/croco-ocean/croco
click on the upright corner **register** tab
then on the right side of the page on the highlight register
confirm your registration with the mail you received
go back https://gitlab.inria.fr
log in
search croco project
select the croco projet and then ask for an access

376 Chapter 2. Tutorials

https://gitlab.inria.fr

Croco Documentation, Release 2.0.0

2. Once you get the access create your own local repository

mkdir /homeX/datahome/login/croco/
cd croco
git init
git clone git@gitlab.inria.fr:croco-ocean/croco.git

3. List of all the available branches

git branch -v -a

4. Create your own local branch (tutu) from a given remote branch (toto)

git checkout -b tutu remotes/origin/toto

5. Get the status of the local repository

git status

6. Update of the branch named “toto” with the remote branch

git pull origin dyneco_rec

7. Toto

git remote show origin

8. Log

git log

2.26.1.7 XIOS FACILITY

2.26.1.7.1 XIOS step by step

1. Change your jobcomp

if [[$HOSTNAME == *"datarmor"*]]; then
XIOS_ROOT_DIR=/home1/datawork/mcaillau/CROCO/XIOS

2. Get the XML files and the routine send_xios_diags

cp /home/datawork-croco/datarmor-only/FORMATION/SRC/croco/XIOS/*.xml .
cp /home/datawork-croco/datarmor-only/FORMATION/SRC/croco/XIOS/*.xml_full .
cp /home/datawork-croco/datarmor-only/FORMATION/SRC/croco/XIOS/send_xios_diags.F␣
→˓.

2.26. Ifremer specific 377

Croco Documentation, Release 2.0.0

378 Chapter 2. Tutorials

BIBLIOGRAPHY

[1] Alexander F. Shchepetkin and James C. McWilliams. The regional oceanic modeling system
(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling,
9(4):347–404, January 2005. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500304000484 (vis-
ited on 2023-06-06), doi:10.1016/j.ocemod.2004.08.002.

[2] Laurent Debreu, Patrick Marchesiello, Pierrick Penven, and Gildas Cambon. Two-way nesting in split-
explicit ocean models: Algorithms, implementation and validation. Ocean Modelling, 49-50:1–21,
June 2012. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500312000480 (visited on 2023-06-06),
doi:10.1016/j.ocemod.2012.03.003.

[3] F. Auclair, L. Bordois, Y. Dossmann, T. Duhaut, A. Paci, C. Ulses, and C. Nguyen. A non-hydrostatic
non-Boussinesq algorithm for free-surface ocean modelling. Ocean Modelling, 132:12–29, Decem-
ber 2018. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500318302646 (visited on 2023-06-06),
doi:10.1016/j.ocemod.2018.07.011.

[4] John Marshall, Chris Hill, Lev Perelman, and Alistair Adcroft. Hydrostatic, quasi-hydrostatic, and nonhy-
drostatic ocean modeling. Journal of Geophysical Research: Oceans, 102(C3):5733–5752, March 1997.
URL: http://doi.wiley.com/10.1029/96JC02776 (visited on 2023-06-06), doi:10.1029/96JC02776.

[5] James C. McWilliams, Juan M. Restrepo, and Emily M. Lane. An asymp-
totic theory for the interaction of waves and currents in coastal waters. Jour-
nal of Fluid Mechanics, 511:135–178, 2004. URL: https://www.cambridge.org/core/
article/an-asymptotic-theory-for-the-interaction-of-waves-and-currents-in-coastal-waters/
DA4918B37321E8DF3D1DFADD776BA8F6, doi:10.1017/S0022112004009358.

[6] T. Gerkema, J. T. F. Zimmerman, L. R. M. Maas, and H. Van Haren. Geophysical and astrophysical fluid
dynamics beyond the traditional approximation. Reviews of Geophysics, 46(2):RG2004, May 2008. URL:
http://doi.wiley.com/10.1029/2006RG000220 (visited on 2023-06-06), doi:10.1029/2006RG000220.

[7] Patrick Marchesiello, Rachid Benshila, Rafael Almar, Yusuke Uchiyama, James C. McWilliams, and
Alexander Shchepetkin. On tridimensional rip current modeling. Ocean Modelling, 96:36–48, Decem-
ber 2015. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500315001122 (visited on 2023-06-06),
doi:10.1016/j.ocemod.2015.07.003.

[8] Yusuke Uchiyama, James C. McWilliams, and Alexander F. Shchepetkin. Wave–current interaction in an
oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modelling,
34(1-2):16–35, January 2010. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500310000594 (vis-
ited on 2023-06-06), doi:10.1016/j.ocemod.2010.04.002.

[9] Michael S. Longuet-Higgins. Mass transport in water waves. Philosophical Transactions of the
Royal Society of London. Series A, Mathematical and Physical Sciences, 245(903):535–581, March
1953. URL: https://royalsocietypublishing.org/doi/10.1098/rsta.1953.0006 (visited on 2023-06-06),
doi:10.1098/rsta.1953.0006.

[10] John Casey Church and Edward B. Thornton. Effects of breaking wave induced turbulence within a long-
shore current model. Coastal Engineering, 20(1-2):1–28, July 1993. URL: https://linkinghub.elsevier.com/
retrieve/pii/037838399390053B (visited on 2023-06-06), doi:10.1016/0378-3839(93)90053-B.

379

https://linkinghub.elsevier.com/retrieve/pii/S1463500304000484
https://doi.org/10.1016/j.ocemod.2004.08.002
https://linkinghub.elsevier.com/retrieve/pii/S1463500312000480
https://doi.org/10.1016/j.ocemod.2012.03.003
https://linkinghub.elsevier.com/retrieve/pii/S1463500318302646
https://doi.org/10.1016/j.ocemod.2018.07.011
http://doi.wiley.com/10.1029/96JC02776
https://doi.org/10.1029/96JC02776
https://www.cambridge.org/core/article/an-asymptotic-theory-for-the-interaction-of-waves-and-currents-in-coastal-waters/DA4918B37321E8DF3D1DFADD776BA8F6
https://www.cambridge.org/core/article/an-asymptotic-theory-for-the-interaction-of-waves-and-currents-in-coastal-waters/DA4918B37321E8DF3D1DFADD776BA8F6
https://www.cambridge.org/core/article/an-asymptotic-theory-for-the-interaction-of-waves-and-currents-in-coastal-waters/DA4918B37321E8DF3D1DFADD776BA8F6
https://doi.org/10.1017/S0022112004009358
http://doi.wiley.com/10.1029/2006RG000220
https://doi.org/10.1029/2006RG000220
https://linkinghub.elsevier.com/retrieve/pii/S1463500315001122
https://doi.org/10.1016/j.ocemod.2015.07.003
https://linkinghub.elsevier.com/retrieve/pii/S1463500310000594
https://doi.org/10.1016/j.ocemod.2010.04.002
https://royalsocietypublishing.org/doi/10.1098/rsta.1953.0006
https://doi.org/10.1098/rsta.1953.0006
https://linkinghub.elsevier.com/retrieve/pii/037838399390053B
https://linkinghub.elsevier.com/retrieve/pii/037838399390053B
https://doi.org/10.1016/0378-3839(93)90053-B

Croco Documentation, Release 2.0.0

[11] Edward B. Thornton and R. T. Guza. Transformation of wave height distribution. Journal of Geophysical
Research, 88(C10):5925, 1983. URL: http://doi.wiley.com/10.1029/JC088iC10p05925 (visited on 2023-
06-06), doi:10.1029/JC088iC10p05925.

[12] Edward B. Thornton and R. T. Guza. Surf Zone Longshore Currents and Random Waves: Field Data and
Models. Journal of Physical Oceanography, 16(7):1165–1178, July 1986. URL: http://journals.ametsoc.
org/doi/10.1175/1520-0485(1986)016\T1\textless{}1165:SZLCAR\T1\textgreater{}2.0.CO;2 (visited on
2023-06-06), doi:10.1175/1520-0485(1986)016<1165:SZLCAR>2.0.CO;2.

[13] Aike Beckmann and Dale B. Haidvogel. Numerical Simulation of Flow around a Tall Isolated
Seamount. Part I: Problem Formulation and Model Accuracy. Journal of Physical Oceanogra-
phy, 23(8):1736–1753, August 1993. URL: http://journals.ametsoc.org/doi/10.1175/1520-0485(1993)
023\T1\textless{}1736:NSOFAA\T1\textgreater{}2.0.CO;2 (visited on 2023-06-06), doi:10.1175/1520-
0485(1993)023<1736:NSOFAA>2.0.CO;2.

[14] Robert L. Haney. On the Pressure Gradient Force over Steep Topography in Sigma Coordinate Ocean
Models. Journal of Physical Oceanography, 21(4):610–619, April 1991. URL: http://journals.ametsoc.
org/doi/10.1175/1520-0485(1991)021\T1\textless{}0610:OTPGFO\T1\textgreater{}2.0.CO;2 (visited on
2023-06-06), doi:10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2.

[15] Yves Soufflet, Patrick Marchesiello, Florian Lemarié, Julien Jouanno, Xavier Capet, Laurent Debreu,
and Rachid Benshila. On effective resolution in ocean models. Ocean Modelling, 98:36–50, Febru-
ary 2016. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500315002401 (visited on 2023-06-06),
doi:10.1016/j.ocemod.2015.12.004.

[16] Alexander F. Shchepetkin and James C. McWilliams. Quasi-Monotone Advection Schemes Based on Ex-
plicit Locally Adaptive Dissipation. Monthly Weather Review, 126(6):1541–1580, June 1998. URL: http://
journals.ametsoc.org/doi/10.1175/1520-0493(1998)126\T1\textless{}1541:QMASBO\T1\textgreater{}2.
0.CO;2 (visited on 2023-06-06), doi:10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2.

[17] C. Ménesguen, S. Le Gentil, P. Marchesiello, and N. Ducousso. Destabilization of an Oceanic Meddy-
Like Vortex: Energy Transfers and Significance of Numerical Settings. Journal of Physical Oceanography,
48(5):1151–1168, May 2018. URL: https://journals.ametsoc.org/view/journals/phoc/48/5/jpo-d-17-0126.
1.xml (visited on 2023-06-06), doi:10.1175/jpo-d-17-0126.1.

[18] Rafael Borges, Monique Carmona, Bruno Costa, and Wai Sun Don. An improved weighted essentially non-
oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 227(6):3191–3211,
March 2008. URL: https://linkinghub.elsevier.com/retrieve/pii/S0021999107005232 (visited on 2023-06-
06), doi:10.1016/j.jcp.2007.11.038.

[19] Alexander F. Shchepetkin. An adaptive, Courant-number-dependent implicit scheme for vertical advection in
oceanic modeling. Ocean Modelling, 91:38–69, July 2015. URL: https://linkinghub.elsevier.com/retrieve/
pii/S1463500315000530 (visited on 2023-06-07), doi:10.1016/j.ocemod.2015.03.006.

[20] P. Marchesiello and P. Estrade. Eddy activity and mixing in upwelling systems: a compara-
tive study of Northwest Africa and California regions. International Journal of Earth Sciences,
98(2):299–308, March 2009. URL: http://link.springer.com/10.1007/s00531-007-0235-6 (visited on 2023-
06-06), doi:10.1007/s00531-007-0235-6.

[21] F. Lemarié, L. Debreu, A.F. Shchepetkin, and J.C. McWilliams. On the stability and accuracy of the har-
monic and biharmonic isoneutral mixing operators in ocean models. Ocean Modelling, 52-53:9–35, Au-
gust 2012. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500312000674 (visited on 2023-06-06),
doi:10.1016/j.ocemod.2012.04.007.

[22] Alexander F. Shchepetkin and James C. McWilliams. A method for computing horizontal pressure-
gradient force in an oceanic model with a nonaligned vertical coordinate. Journal of Geophysical Re-
search, 108(C3):3090, 2003. URL: http://doi.wiley.com/10.1029/2001JC001047 (visited on 2023-06-07),
doi:10.1029/2001JC001047.

[23] Patrick Marchesiello, James C. McWilliams, and Alexander Shchepetkin. Open boundary conditions for
long-term integration of regional oceanic models. Ocean Modelling, 3(1-2):1–20, January 2001. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S1463500300000135 (visited on 2023-06-06), doi:10.1016/S1463-
5003(00)00013-5.

380 Bibliography

http://doi.wiley.com/10.1029/JC088iC10p05925
https://doi.org/10.1029/JC088iC10p05925
http://journals.ametsoc.org/doi/10.1175/1520-0485(1986)016\T1\textless {}1165:SZLCAR\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0485(1986)016\T1\textless {}1165:SZLCAR\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0485(1986)016\T1\textless {}1165:SZLCAR\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0485(1993)023\T1\textless {}1736:NSOFAA\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0485(1993)023\T1\textless {}1736:NSOFAA\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0485(1993)023\T1\textless {}1736:NSOFAA\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0485(1993)023\T1\textless {}1736:NSOFAA\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0485(1991)021\T1\textless {}0610:OTPGFO\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0485(1991)021\T1\textless {}0610:OTPGFO\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0485(1991)021\T1\textless {}0610:OTPGFO\T1\textgreater {}2.0.CO;2
https://linkinghub.elsevier.com/retrieve/pii/S1463500315002401
https://doi.org/10.1016/j.ocemod.2015.12.004
http://journals.ametsoc.org/doi/10.1175/1520-0493(1998)126\T1\textless {}1541:QMASBO\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0493(1998)126\T1\textless {}1541:QMASBO\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0493(1998)126\T1\textless {}1541:QMASBO\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126\T1\textless {}1541:QMASBO\T1\textgreater {}2.0.CO;2
https://journals.ametsoc.org/view/journals/phoc/48/5/jpo-d-17-0126.1.xml
https://journals.ametsoc.org/view/journals/phoc/48/5/jpo-d-17-0126.1.xml
https://doi.org/10.1175/jpo-d-17-0126.1
https://linkinghub.elsevier.com/retrieve/pii/S0021999107005232
https://doi.org/10.1016/j.jcp.2007.11.038
https://linkinghub.elsevier.com/retrieve/pii/S1463500315000530
https://linkinghub.elsevier.com/retrieve/pii/S1463500315000530
https://doi.org/10.1016/j.ocemod.2015.03.006
http://link.springer.com/10.1007/s00531-007-0235-6
https://doi.org/10.1007/s00531-007-0235-6
https://linkinghub.elsevier.com/retrieve/pii/S1463500312000674
https://doi.org/10.1016/j.ocemod.2012.04.007
http://doi.wiley.com/10.1029/2001JC001047
https://doi.org/10.1029/2001JC001047
https://linkinghub.elsevier.com/retrieve/pii/S1463500300000135
https://linkinghub.elsevier.com/retrieve/pii/S1463500300000135
https://doi.org/10.1016/S1463-5003(00)00013-5
https://doi.org/10.1016/S1463-5003(00)00013-5

Croco Documentation, Release 2.0.0

[24] David R. Jackett and Trevor J. Mcdougall. Minimal Adjustment of Hydrographic Profiles to Achieve
Static Stability. Journal of Atmospheric and Oceanic Technology, 12(2):381–389, April 1995. URL: http://
journals.ametsoc.org/doi/10.1175/1520-0426(1995)012\T1\textless{}0381:MAOHPT\T1\textgreater{}2.
0.CO;2 (visited on 2023-06-07), doi:10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

[25] John C. Warner, Zafer Defne, Kevin Haas, and Hernan G. Arango. A wetting and drying scheme for
ROMS. Computers & Geosciences, 58:54–61, August 2013. URL: https://linkinghub.elsevier.com/retrieve/
pii/S0098300413001362 (visited on 2023-06-07), doi:10.1016/j.cageo.2013.05.004.

[26] William G. Large. Modeling and Parameterizing the Ocean Planetary Boundary Layer. In Eric P. Chassignet
and Jacques Verron, editors, Ocean Modeling and Parameterization, pages 81–120. Springer Netherlands,
Dordrecht, 1998. URL: http://link.springer.com/10.1007/978-94-011-5096-5_3 (visited on 2023-06-07),
doi:10.1007/978-94-011-5096-5_3.

[27] W. G. Large, J. C. McWilliams, and S. C. Doney. Oceanic vertical mixing: A review and a model with a
nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4):363, 1994. URL: http://doi.wiley.
com/10.1029/94RG01872 (visited on 2023-06-07), doi:10.1029/94RG01872.

[28] James C. McWilliams and Peter P. Sullivan. Vertical Mixing by Langmuir Circulations. Spill Science
& Technology Bulletin, 6(3-4):225–237, June 2000. URL: https://linkinghub.elsevier.com/retrieve/pii/
S135325610100041X (visited on 2023-06-07), doi:10.1016/S1353-2561(01)00041-X.

[29] L. P. Van Roekel, B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney. The form and orientation
of Langmuir cells for misaligned winds and waves: LANGMUIR UNDER MISALIGNED WIND AND
WAVES. Journal of Geophysical Research: Oceans, 117(C5):n/a–n/a, May 2012. URL: http://doi.wiley.
com/10.1029/2011JC007516 (visited on 2023-06-07), doi:10.1029/2011JC007516.

[30] Qing Li, Adrean Webb, Baylor Fox-Kemper, Anthony Craig, Gokhan Danabasoglu, William G. Large, and
Mariana Vertenstein. Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Mod-
elling, 103:145–160, July 2016. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500315001407
(visited on 2023-06-07), doi:10.1016/j.ocemod.2015.07.020.

[31] Andrej Nikolaevich Kolmogorov. Equations of turbulent motion in an incompressible fluid. Dokl. Akad.
Nauk SSSR, 30(4):299–303, 1942.

[32] W.P Jones and B.E Launder. The prediction of laminarization with a two-equation model of turbulence.
International Journal of Heat and Mass Transfer, 15(2):301–314, February 1972. URL: https://linkinghub.
elsevier.com/retrieve/pii/0017931072900762 (visited on 2023-06-07), doi:10.1016/0017-9310(72)90076-2.

[33] Lars Umlauf and Hans Burchard. A generic length-scale equation for geophysical turbulence models. Jour-
nal of Marine Research, 61:235–265, 2003.

[34] M. M. Gibson and B. E. Launder. Ground effects on pressure fluctuations in the atmo-
spheric boundary layer. Journal of Fluid Mechanics, 86(3):491–511, June 1978. URL: https:
//www.cambridge.org/core/product/identifier/S0022112078001251/type/journal_article (visited on
2023-06-08), doi:10.1017/S0022112078001251.

[35] George L. Mellor and Tetsuji Yamada. Development of a turbulence closure model for geophysical fluid
problems. Reviews of Geophysics, 20(4):851, 1982. URL: http://doi.wiley.com/10.1029/RG020i004p00851
(visited on 2023-06-08), doi:10.1029/RG020i004p00851.

[36] Lakshmi H. Kantha and Carol Anne Clayson. An improved mixed layer model for geophysical applications.
Journal of Geophysical Research, 99(C12):25235, 1994. URL: http://doi.wiley.com/10.1029/94JC02257
(visited on 2023-06-08), doi:10.1029/94JC02257.

[37] Patrick J. Luyten. An analytical and numerical study of surface and bottom boundary layers with vari-
able forcing and application to the North Sea. Journal of Marine Systems, 8(3-4):171–189, Septem-
ber 1996. URL: https://linkinghub.elsevier.com/retrieve/pii/092479639600005X (visited on 2023-06-08),
doi:10.1016/0924-7963(96)00005-X.

[38] Y. Cheng, V. M. Canuto, and A. M. Howard. An Improved Model for the Turbulent PBL. Jour-
nal of the Atmospheric Sciences, 59(9):1550–1565, May 2002. URL: http://journals.ametsoc.org/doi/
10.1175/1520-0469(2002)059\T1\textless{}1550:AIMFTT\T1\textgreater{}2.0.CO;2 (visited on 2023-06-
08), doi:10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2.

Bibliography 381

http://journals.ametsoc.org/doi/10.1175/1520-0426(1995)012\T1\textless {}0381:MAOHPT\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0426(1995)012\T1\textless {}0381:MAOHPT\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0426(1995)012\T1\textless {}0381:MAOHPT\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0426(1995)012\T1\textless {}0381:MAOHPT\T1\textgreater {}2.0.CO;2
https://linkinghub.elsevier.com/retrieve/pii/S0098300413001362
https://linkinghub.elsevier.com/retrieve/pii/S0098300413001362
https://doi.org/10.1016/j.cageo.2013.05.004
http://link.springer.com/10.1007/978-94-011-5096-5_3
https://doi.org/10.1007/978-94-011-5096-5_3
http://doi.wiley.com/10.1029/94RG01872
http://doi.wiley.com/10.1029/94RG01872
https://doi.org/10.1029/94RG01872
https://linkinghub.elsevier.com/retrieve/pii/S135325610100041X
https://linkinghub.elsevier.com/retrieve/pii/S135325610100041X
https://doi.org/10.1016/S1353-2561(01)00041-X
http://doi.wiley.com/10.1029/2011JC007516
http://doi.wiley.com/10.1029/2011JC007516
https://doi.org/10.1029/2011JC007516
https://linkinghub.elsevier.com/retrieve/pii/S1463500315001407
https://doi.org/10.1016/j.ocemod.2015.07.020
https://linkinghub.elsevier.com/retrieve/pii/0017931072900762
https://linkinghub.elsevier.com/retrieve/pii/0017931072900762
https://doi.org/10.1016/0017-9310(72)90076-2
https://www.cambridge.org/core/product/identifier/S0022112078001251/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112078001251/type/journal_article
https://doi.org/10.1017/S0022112078001251
http://doi.wiley.com/10.1029/RG020i004p00851
https://doi.org/10.1029/RG020i004p00851
http://doi.wiley.com/10.1029/94JC02257
https://doi.org/10.1029/94JC02257
https://linkinghub.elsevier.com/retrieve/pii/092479639600005X
https://doi.org/10.1016/0924-7963(96)00005-X
http://journals.ametsoc.org/doi/10.1175/1520-0469(2002)059\T1\textless {}1550:AIMFTT\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0469(2002)059\T1\textless {}1550:AIMFTT\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059\T1\textless {}1550:AIMFTT\T1\textgreater {}2.0.CO;2

Croco Documentation, Release 2.0.0

[39] B. Galperin, L. H. Kantha, S. Hassid, and A. Rosati. A Quasi-equilibrium Turbulent Energy Model for
Geophysical Flows. Journal of the Atmospheric Sciences, 45(1):55–62, January 1988. URL: http://journals.
ametsoc.org/doi/10.1175/1520-0469(1988)045\T1\textless{}0055:AQETEM\T1\textgreater{}2.0.CO;2
(visited on 2023-06-08), doi:10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2.

[40] Lionel Renault, S. Masson, T. Arsouze, Gurvan Madec, and James C. McWilliams. Recipes for
How to Force Oceanic Model Dynamics. Journal of Advances in Modeling Earth Systems, Febru-
ary 2020. URL: https://onlinelibrary.wiley.com/doi/10.1029/2019MS001715 (visited on 2023-06-08),
doi:10.1029/2019MS001715.

[41] Xubin Zeng and Anton Beljaars. A prognostic scheme of sea surface skin temperature for modeling and
data assimilation: SEA SURFACE SKIN TEMPERATURE SCHEME. Geophysical Research Letters,
32(14):n/a–n/a, July 2005. URL: http://doi.wiley.com/10.1029/2005GL023030 (visited on 2023-06-08),
doi:10.1029/2005GL023030.

[42] E. Blayo and L. Debreu. Revisiting open boundary conditions from the point of view of characteristic vari-
ables. Ocean Modelling, 9(3):231–252, January 2005. URL: https://linkinghub.elsevier.com/retrieve/pii/
S1463500304000447 (visited on 2023-06-08), doi:10.1016/j.ocemod.2004.07.001.

[43] Pierrick Penven, Laurent Debreu, Patrick Marchesiello, and James C. McWilliams. Evaluation and applica-
tion of the ROMS 1-way embedding procedure to the central california upwelling system. Ocean Modelling,
12(1-2):157–187, January 2006. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500305000491
(visited on 2023-06-08), doi:10.1016/j.ocemod.2005.05.002.

[44] Eric Blayo and Laurent Debreu. Adaptive Mesh Refinement for Finite-Difference Ocean Models: First Ex-
periments. Journal of Physical Oceanography, 29(6):1239–1250, June 1999. URL: http://journals.ametsoc.
org/doi/10.1175/1520-0485(1999)029\T1\textless{}1239:AMRFFD\T1\textgreater{}2.0.CO;2 (visited on
2023-06-08), doi:10.1175/1520-0485(1999)029<1239:AMRFFD>2.0.CO;2.

[45] Laurent Debreu, Christophe Vouland, and Eric Blayo. AGRIF: Adaptive grid refinement in Fortran.
Computers & Geosciences, 34(1):8–13, January 2008. URL: https://linkinghub.elsevier.com/retrieve/pii/
S009830040700115X (visited on 2023-06-08), doi:10.1016/j.cageo.2007.01.009.

[46] Meinte Blaas, Changming Dong, Patrick Marchesiello, James C. McWilliams, and Keith D. Stolzen-
bach. Sediment-transport modeling on Southern Californian shelves: A ROMS case study. Conti-
nental Shelf Research, 27(6):832–853, March 2007. URL: https://linkinghub.elsevier.com/retrieve/pii/
S027843430600389X (visited on 2023-06-09), doi:10.1016/j.csr.2006.12.003.

[47] RL Soulsby. Bed shear-stresses due to combined waves and currents. Advances in coastal morphodynamics,
1995.

[48] William D. Grant and Ole Secher Madsen. Movable bed roughness in unsteady oscillatory flow. Journal of
Geophysical Research, 87(C1):469, 1982. URL: http://doi.wiley.com/10.1029/JC087iC01p00469 (visited
on 2023-06-09), doi:10.1029/JC087iC01p00469.

[49] Peter Nielsen. Suspended sediment concentrations under waves. Coastal Engineering, 10(1):23–31,
May 1986. URL: https://linkinghub.elsevier.com/retrieve/pii/0378383986900372 (visited on 2023-06-09),
doi:10.1016/0378-3839(86)90037-2.

[50] Michael Z Li and Carl L Amos. SEDTRANS96: the upgraded and better calibrated sediment-transport
model for continental shelves. Computers & Geosciences, 27(6):619–645, July 2001. URL: https://
linkinghub.elsevier.com/retrieve/pii/S0098300400001205 (visited on 2023-06-09), doi:10.1016/S0098-
3004(00)00120-5.

[51] John C. Warner, Christopher R. Sherwood, Richard P. Signell, Courtney K. Harris, and Hernan G. Arango.
Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Com-
puters & Geosciences, 34(10):1284–1306, October 2008. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0098300408000563 (visited on 2023-06-09), doi:10.1016/j.cageo.2008.02.012.

[52] Farshad Shafiei. Nutrient mass balance of a large riverine reservoir in the context of water residence
time variability. Environmental Science and Pollution Research, 28(29):39082–39100, August 2021. URL:
https://link.springer.com/10.1007/s11356-021-13297-8 (visited on 2023-06-09), doi:10.1007/s11356-021-
13297-8.

382 Bibliography

http://journals.ametsoc.org/doi/10.1175/1520-0469(1988)045\T1\textless {}0055:AQETEM\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0469(1988)045\T1\textless {}0055:AQETEM\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0469(1988)045\T1\textless {}0055:AQETEM\T1\textgreater {}2.0.CO;2
https://onlinelibrary.wiley.com/doi/10.1029/2019MS001715
https://doi.org/10.1029/2019MS001715
http://doi.wiley.com/10.1029/2005GL023030
https://doi.org/10.1029/2005GL023030
https://linkinghub.elsevier.com/retrieve/pii/S1463500304000447
https://linkinghub.elsevier.com/retrieve/pii/S1463500304000447
https://doi.org/10.1016/j.ocemod.2004.07.001
https://linkinghub.elsevier.com/retrieve/pii/S1463500305000491
https://doi.org/10.1016/j.ocemod.2005.05.002
http://journals.ametsoc.org/doi/10.1175/1520-0485(1999)029\T1\textless {}1239:AMRFFD\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0485(1999)029\T1\textless {}1239:AMRFFD\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0485(1999)029\T1\textless {}1239:AMRFFD\T1\textgreater {}2.0.CO;2
https://linkinghub.elsevier.com/retrieve/pii/S009830040700115X
https://linkinghub.elsevier.com/retrieve/pii/S009830040700115X
https://doi.org/10.1016/j.cageo.2007.01.009
https://linkinghub.elsevier.com/retrieve/pii/S027843430600389X
https://linkinghub.elsevier.com/retrieve/pii/S027843430600389X
https://doi.org/10.1016/j.csr.2006.12.003
http://doi.wiley.com/10.1029/JC087iC01p00469
https://doi.org/10.1029/JC087iC01p00469
https://linkinghub.elsevier.com/retrieve/pii/0378383986900372
https://doi.org/10.1016/0378-3839(86)90037-2
https://linkinghub.elsevier.com/retrieve/pii/S0098300400001205
https://linkinghub.elsevier.com/retrieve/pii/S0098300400001205
https://doi.org/10.1016/S0098-3004(00)00120-5
https://doi.org/10.1016/S0098-3004(00)00120-5
https://linkinghub.elsevier.com/retrieve/pii/S0098300408000563
https://linkinghub.elsevier.com/retrieve/pii/S0098300408000563
https://doi.org/10.1016/j.cageo.2008.02.012
https://link.springer.com/10.1007/s11356-021-13297-8
https://doi.org/10.1007/s11356-021-13297-8
https://doi.org/10.1007/s11356-021-13297-8

Croco Documentation, Release 2.0.0

[53] Courtney K. Harris and Patricia L. Wiberg. Approaches to quantifying long-term continental shelf sed-
iment transport with an example from the Northern California STRESS mid-shelf site. Continental
Shelf Research, 17(11):1389–1418, September 1997. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0278434397000174 (visited on 2023-06-09), doi:10.1016/S0278-4343(97)00017-4.

[54] Dale R. Durran. Numerical Methods for Fluid Dynamics. Volume 32 of Texts in Applied Mathemat-
ics. Springer New York, New York, NY, 2010. ISBN 9781441964113 9781441964120. URL: http://link.
springer.com/10.1007/978-1-4419-6412-0 (visited on 2023-06-09), doi:10.1007/978-1-4419-6412-0.

[55] E. Meyer-Peter and R. Müller. Formulas for bed-load transport. pages 39–64, 1948.

[56] Tarandeep S. Kalra, Christopher R. Sherwood, John C. Warner, Yashar Rafati, and Tian-Jian Hsu. IN-
VESTIGATING BEDLOAD TRANSPORT UNDER ASYMMETRICAL WAVES USING A COUPLED
OCEAN-WAVE MODEL. In Coastal Sediments 2019, 591–604. Tampa/St. Petersburg, Florida, USA, May
2019. WORLD SCIENTIFIC. URL: https://www.worldscientific.com/doi/abs/10.1142/9789811204487_
0052 (visited on 2023-06-09), doi:10.1142/9789811204487_0052.

[57] G.R. Lesser, J.A. Roelvink, J.A.T.M. Van Kester, and G.S. Stelling. Development and valida-
tion of a three-dimensional morphological model. Coastal Engineering, 51(8-9):883–915, October
2004. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378383904000870 (visited on 2023-06-09),
doi:10.1016/j.coastaleng.2004.07.014.

[58] Mohammad Dibajnia and Akira Watanabe. Sheet Flow Under Nonlinear Waves and Currents.
In Coastal Engineering 1992, 2015–2028. Venice, Italy, June 1993. American Society of Civil
Engineers. URL: http://ascelibrary.org/doi/10.1061/9780872629332.154 (visited on 2023-06-09),
doi:10.1061/9780872629332.154.

[59] Jan S. Ribberink. Bed-load transport for steady flows and unsteady oscillatory flows. Coastal Engineering,
34(1-2):59–82, July 1998. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378383998000131 (visited
on 2023-06-20), doi:10.1016/S0378-3839(98)00013-1.

[60] Leo C. van Rijn. Principles of sediment transport in rivers, estuaries and coastal seas. In 1993.

[61] J.A. Roelvink. Coastal morphodynamic evolution techniques. Coastal Engineering, 53(2-3):277–287,
February 2006. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378383905001419 (visited on 2023-
06-09), doi:10.1016/j.coastaleng.2005.10.015.

[62] R.L. Soulsby. Dynamics of marine sands: a manual for practical applications. Oceanographic Literature
Review, 44(9):947, 1997.

[63] J. Dungan Smith and S. R. McLean. Spatially averaged flow over a wavy surface. Journal of Geophysical
Research, 82(12):1735–1746, April 1977. URL: http://doi.wiley.com/10.1029/JC082i012p01735 (visited
on 2023-06-20), doi:10.1029/JC082i012p01735.

[64] Romaric Verney, Robert Lafite, Jean Claude Brun-Cottan, and Pierre Le Hir. Behaviour of a floc popula-
tion during a tidal cycle: Laboratory experiments and numerical modelling. Continental Shelf Research,
31(10):S64–S83, July 2011. URL: https://linkinghub.elsevier.com/retrieve/pii/S0278434310000415 (vis-
ited on 2023-08-04), doi:10.1016/j.csr.2010.02.005.

[65] Pierre Le Hir, Florence Cayocca, and Benoît Waeles. Dynamics of sand and mud mixtures: A
multiprocess-based modelling strategy. Continental Shelf Research, 31(10):S135–S149, July 2011.
URL: https://linkinghub.elsevier.com/retrieve/pii/S0278434310003833 (visited on 2023-06-09),
doi:10.1016/j.csr.2010.12.009.

[66] Baptiste Mengual, Pierre Le Hir, Aurélie Rivier, Matthieu Caillaud, and Florent Grasso. Numerical modeling
of bedload and suspended load contributions to morphological evolution of the Seine Estuary (France). Inter-
national Journal of Sediment Research, 36(6):723–735, December 2021. URL: https://linkinghub.elsevier.
com/retrieve/pii/S1001627920300755 (visited on 2023-06-26), doi:10.1016/j.ijsrc.2020.07.003.

[67] Aurélie Rivier, Pierre Le Hir, Pascal Bailly Du Bois, Philippe Laguionie, and Mehdi Morillon. Numeri-
cal modelling of heterogeneous sediment transport: new insights for particulate radionuclide transport and
deposition. 2017. URL: https://archimer.ifremer.fr/doc/00394/50580/.

[68] Leo C. Van Rijn. Sediment Pick-Up Functions. Journal of Hydraulic Engineering, 110(10):1494–1502,
October 1984. URL: https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9429%281984%29110%
3A10%281494%29 (visited on 2023-06-26), doi:10.1061/(ASCE)0733-9429(1984)110:10(1494).

Bibliography 383

https://linkinghub.elsevier.com/retrieve/pii/S0278434397000174
https://linkinghub.elsevier.com/retrieve/pii/S0278434397000174
https://doi.org/10.1016/S0278-4343(97)00017-4
http://link.springer.com/10.1007/978-1-4419-6412-0
http://link.springer.com/10.1007/978-1-4419-6412-0
https://doi.org/10.1007/978-1-4419-6412-0
https://www.worldscientific.com/doi/abs/10.1142/9789811204487_0052
https://www.worldscientific.com/doi/abs/10.1142/9789811204487_0052
https://doi.org/10.1142/9789811204487_0052
https://linkinghub.elsevier.com/retrieve/pii/S0378383904000870
https://doi.org/10.1016/j.coastaleng.2004.07.014
http://ascelibrary.org/doi/10.1061/9780872629332.154
https://doi.org/10.1061/9780872629332.154
https://linkinghub.elsevier.com/retrieve/pii/S0378383998000131
https://doi.org/10.1016/S0378-3839(98)00013-1
https://linkinghub.elsevier.com/retrieve/pii/S0378383905001419
https://doi.org/10.1016/j.coastaleng.2005.10.015
http://doi.wiley.com/10.1029/JC082i012p01735
https://doi.org/10.1029/JC082i012p01735
https://linkinghub.elsevier.com/retrieve/pii/S0278434310000415
https://doi.org/10.1016/j.csr.2010.02.005
https://linkinghub.elsevier.com/retrieve/pii/S0278434310003833
https://doi.org/10.1016/j.csr.2010.12.009
https://linkinghub.elsevier.com/retrieve/pii/S1001627920300755
https://linkinghub.elsevier.com/retrieve/pii/S1001627920300755
https://doi.org/10.1016/j.ijsrc.2020.07.003
https://archimer.ifremer.fr/doc/00394/50580/
https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9429%281984%29110%3A10%281494%29
https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9429%281984%29110%3A10%281494%29
https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1494)

Croco Documentation, Release 2.0.0

[69] Weiming Wu and Qianru Lin. Nonuniform sediment transport under non-breaking waves and cur-
rents. Coastal Engineering, 90:1–11, August 2014. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0378383914000763 (visited on 2023-06-26), doi:10.1016/j.coastaleng.2014.04.006.

[70] Baptiste Mengual, Pierre Le Hir, Florence Cayocca, and Thierry Garlan. Modelling Fine Sediment Dynam-
ics: Towards a Common Erosion Law for Fine Sand, Mud and Mixtures. Water, 9(8):564, July 2017. URL:
http://www.mdpi.com/2073-4441/9/8/564 (visited on 2023-06-09), doi:10.3390/w9080564.

[71] Weiming Wu and Wei Li. Porosity of bimodal sediment mixture with particle filling. International Jour-
nal of Sediment Research, 32(2):253–259, June 2017. URL: https://linkinghub.elsevier.com/retrieve/pii/
S1001627917300793 (visited on 2023-06-26), doi:10.1016/j.ijsrc.2017.03.005.

[72] John K. Wooster, Scott R. Dusterhoff, Yantao Cui, Leonard S. Sklar, William E. Dietrich, and Mary
Malko. Sediment supply and relative size distribution effects on fine sediment infiltration into im-
mobile gravels: FINE SEDIMENT INFILTRATION INTO IMMOBILE GRAVELS. Water Resources
Research, March 2008. URL: http://doi.wiley.com/10.1029/2006WR005815 (visited on 2023-06-09),
doi:10.1029/2006WR005815.

[73] Yantao Cui, Chris Paola, and Gary Parker. Numerical simulation of aggradation and downstream fining.
Journal of Hydraulic Research, 34(2):185–204, March 1996. URL: https://www.tandfonline.com/doi/full/
10.1080/00221689609498496 (visited on 2023-06-20), doi:10.1080/00221689609498496.

[74] L. M. Merckelbach and C. Kranenburg. Equations for effective stress and permeability of soft mud–sand
mixtures. Géotechnique, 54(4):235–243, May 2004. URL: https://www.icevirtuallibrary.com/doi/10.1680/
geot.2004.54.4.235 (visited on 2023-06-09), doi:10.1680/geot.2004.54.4.235.

[75] W. H. McAnally. Aggregation and deposition of estuarial fine sediment. PhD thesis, University of Florida,
1999.

[76] J.C. Winterwerp, A.J. Bale, M.C. Christie, K.R. Dyer, S. Jones, D.G. Lintern, A.J. Manning, and W. Roberts.
Flocculation and settling velocity of fine sediment. In Proceedings in Marine Science, volume 5, pages
25–40. Elsevier, 2002. URL: https://linkinghub.elsevier.com/retrieve/pii/S1568269202800067 (visited on
2023-06-09), doi:10.1016/S1568-2692(02)80006-7.

[77] W. van Leussen. Estuarine macroflocs and their role in fine-grained sediment transport. PhD thesis, Uni-
versity of Utrecht, 1994.

[78] J.C. Winterwerp. On the dynamic of high-concentrated mud suspensions. 99:, 01 1999.

[79] Eric Wolanski, Takashi Asaeda, and Jorg Imberger. Mixing across a lutocline. Limnology and Oceanogra-
phy, 34(5):931–938, July 1989. URL: http://doi.wiley.com/10.4319/lo.1989.34.5.0931 (visited on 2023-06-
20), doi:10.4319/lo.1989.34.5.0931.

[80] M. Smoluchowski. Versuch einer mathematischen theorie des koagulations-kinetik kolloid losungen.
Zeitschrift fur Physikalisch@phdthesise Chemie, 92:129–168, 1917.

[81] C. Kranenburg. The fractal structure of cohesive sediment aggregates. Estuarine, Coastal and Shelf Science,
39(6):451–460, January 1994. URL: https://linkinghub.elsevier.com/retrieve/pii/S0272771406800028 (vis-
ited on 2023-06-20), doi:10.1016/S0272-7714(06)80002-8.

[82] W.H. McAnally and A.J. Mehta. Collisional aggregation of fine estuarial sediment. In Proceedings in Ma-
rine Science, volume 3, pages 19–39. Elsevier, 2000. URL: https://linkinghub.elsevier.com/retrieve/pii/
S1568269200801102 (visited on 2023-08-04), doi:10.1016/S1568-2692(00)80110-2.

[83] W.H. McAnally and A.J. Mehta. Significance of Aggregation of Fine Sediment Particles in Their Deposition.
Estuarine, Coastal and Shelf Science, 54(4):643–653, April 2002. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0272771401908479 (visited on 2023-08-04), doi:10.1006/ecss.2001.0847.

[84] Katerini Kombiadou, Florian Ganthy, Verney Romaric, Martin Plus, and Sottolichio Aldo. Modelling the
effects of zostera noltei meadows on sediment dynamics: application to the arcachon lagoon. Ocean Dy-
namics, 64(10):1499–1516, 2014. URL:, doi:https://doi.org/10.1007/s10236-014-0754-1.

[85] Florian Ganthy, Romaric Verney, and Franck Dumas. Improvements of a process-based model for 2-
and 3-dimensional simulation of flow in presence of various obstructions. Preprint available at SSRN:
https://ssrn.com/abstract=4775274 or http://dx.doi.org/10.2139/ssrn.4775274, 2024.

384 Bibliography

https://linkinghub.elsevier.com/retrieve/pii/S0378383914000763
https://linkinghub.elsevier.com/retrieve/pii/S0378383914000763
https://doi.org/10.1016/j.coastaleng.2014.04.006
http://www.mdpi.com/2073-4441/9/8/564
https://doi.org/10.3390/w9080564
https://linkinghub.elsevier.com/retrieve/pii/S1001627917300793
https://linkinghub.elsevier.com/retrieve/pii/S1001627917300793
https://doi.org/10.1016/j.ijsrc.2017.03.005
http://doi.wiley.com/10.1029/2006WR005815
https://doi.org/10.1029/2006WR005815
https://www.tandfonline.com/doi/full/10.1080/00221689609498496
https://www.tandfonline.com/doi/full/10.1080/00221689609498496
https://doi.org/10.1080/00221689609498496
https://www.icevirtuallibrary.com/doi/10.1680/geot.2004.54.4.235
https://www.icevirtuallibrary.com/doi/10.1680/geot.2004.54.4.235
https://doi.org/10.1680/geot.2004.54.4.235
https://linkinghub.elsevier.com/retrieve/pii/S1568269202800067
https://doi.org/10.1016/S1568-2692(02)80006-7
http://doi.wiley.com/10.4319/lo.1989.34.5.0931
https://doi.org/10.4319/lo.1989.34.5.0931
https://linkinghub.elsevier.com/retrieve/pii/S0272771406800028
https://doi.org/10.1016/S0272-7714(06)80002-8
https://linkinghub.elsevier.com/retrieve/pii/S1568269200801102
https://linkinghub.elsevier.com/retrieve/pii/S1568269200801102
https://doi.org/10.1016/S1568-2692(00)80110-2
https://linkinghub.elsevier.com/retrieve/pii/S0272771401908479
https://linkinghub.elsevier.com/retrieve/pii/S0272771401908479
https://doi.org/10.1006/ecss.2001.0847
https://doi.org/https://doi.org/10.1007/s10236-014-0754-1

Croco Documentation, Release 2.0.0

[86] Mohamed Abdelrhman. Modeling coupling between eelgrass zostera marina and water flow. Marine
Ecology-progress Series - MAR ECOL-PROGR SER, 338:81–96, 05 2007. doi:10.3354/meps338081.

[87] Mohamed Abdelrhman. Effect of eelgrass zostera marina canopies on flow and transport. Marine Ecology-
progress Series - MAR ECOL-PROGR SER, 248:67–83, 02 2003. doi:10.3354/meps248067.

[88] Nicolas Gruber, Hartmut Frenzel, Scott C. Doney, Patrick Marchesiello, James C. McWilliams, John R.
Moisan, John J. Oram, Gian-Kasper Plattner, and Keith D. Stolzenbach. Eddy-resolving simulation of
plankton ecosystem dynamics in the California Current System. Deep Sea Research Part I: Oceanographic
Research Papers, 53(9):1483–1516, September 2006. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0967063706001713 (visited on 2023-06-09), doi:10.1016/j.dsr.2006.06.005.

[89] Nicolas Gruber, Zouhair Lachkar, Hartmut Frenzel, Patrick Marchesiello, Matthias Münnich, James C.
McWilliams, Takeyoshi Nagai, and Gian-Kasper Plattner. Eddy-induced reduction of biological produc-
tion in eastern boundary upwelling systems. Nature Geoscience, 4(11):787–792, November 2011. URL:
https://www.nature.com/articles/ngeo1273 (visited on 2023-06-09), doi:10.1038/ngeo1273.

[90] E. Gutknecht, I. Dadou, B. Le Vu, G. Cambon, J. Sudre, V. Garçon, E. Machu, T. Rixen,
A. Kock, A. Flohr, A. Paulmier, and G. Lavik. Coupled physical/biogeochemical modeling including
O<sub>2</sub>-dependent processes in the Eastern Boundary Upwelling Systems: application
in the Benguela. Biogeosciences, 10(6):3559–3591, June 2013. URL: https://bg.copernicus.org/articles/10/
3559/2013/ (visited on 2023-06-09), doi:10.5194/bg-10-3559-2013.

[91] B. Aumont, S. Szopa, and S. Madronich. Modelling the evolution of organic carbon during its gas-
phase tropospheric oxidation: development of an explicit model based on a self generating approach.
Atmospheric Chemistry and Physics, 5(9):2497–2517, September 2005. URL: https://acp.copernicus.org/
articles/5/2497/2005/ (visited on 2023-06-09), doi:10.5194/acp-5-2497-2005.

[92] Martin Huret, Isabelle Dadou, Franck Dumas, Pascal Lazure, and Véronique Garçon. Coupling physical
and biogeochemical processes in the Río de la Plata plume. Continental Shelf Research, 25(5-6):629–653,
March 2005. URL: https://linkinghub.elsevier.com/retrieve/pii/S0278434304002614 (visited on 2023-06-
09), doi:10.1016/j.csr.2004.10.003.

[93] E.V. Yakushev, F. Pollehne, G. Jost, I. Kuznetsov, B. Schneider, and L. Umlauf. Analysis of the water
column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Marine Chemistry,
107(3):388–410, December 2007. URL: https://linkinghub.elsevier.com/retrieve/pii/S0304420307001314
(visited on 2023-06-09), doi:10.1016/j.marchem.2007.06.003.

[94] Teodoro Coba De La Peña, Francisco J. Redondo, Esteban Manrique, M. M. Lucas, and José J. Pueyo.
Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants express-
ing a cyanobacterial flavodoxin: Flavodoxin induces salt tolerance in nodules. Plant Biotechnology Jour-
nal, 8(9):954–965, December 2010. URL: https://onlinelibrary.wiley.com/doi/10.1111/j.1467-7652.2010.
00519.x (visited on 2023-06-09), doi:10.1111/j.1467-7652.2010.00519.x.

[95] P. Suntharalingam, J. L. Sarmiento, and J. R. Toggweiler. Global significance of nitrous-oxide produc-
tion and transport from oceanic low-oxygen zones: A modeling study. Global Biogeochemical Cycles,
14(4):1353–1370, December 2000. URL: http://doi.wiley.com/10.1029/1999GB900100 (visited on 2023-
06-09), doi:10.1029/1999GB900100.

[96] Parvadha Suntharalingam, Erik Buitenhuis, Corinne Le Quéré, Frank Dentener, Cynthia Nevison, James H.
Butler, Hermann W. Bange, and Grant Forster. Quantifying the impact of anthropogenic nitrogen deposition
on oceanic nitrous oxide: ANTHROPOGENIC N DEPOSITION AND OCEAN N $_\textrm 2$ O. Geo-
physical Research Letters, 39(7):n/a–n/a, April 2012. URL: http://doi.wiley.com/10.1029/2011GL050778
(visited on 2023-06-09), doi:10.1029/2011GL050778.

[97] Giulio Boccaletti, Ronald C. Pacanowski, S. George, H. Philander, and Alexey V. Fedorov. The Thermal
Structure of the Upper Ocean. Journal of Physical Oceanography, 34(4):888–902, April 2004. URL: http:
//journals.ametsoc.org/doi/10.1175/1520-0485(2004)034\T1\textless{}0888:TTSOTU\T1\textgreater{}2.
0.CO;2 (visited on 2023-06-21), doi:10.1175/1520-0485(2004)034<0888:TTSOTU>2.0.CO;2.

[98] Philippe Estrade, Patrick Marchesiello, Alain Colin De Verdière, and Claude Roy. Cross-shelf structure
of coastal upwelling: A two — dimensional extension of Ekman's theory and a mechanism for inner
shelf upwelling shut down. Journal of Marine Research, 66(5):589–616, September 2008. URL: http://

Bibliography 385

https://doi.org/10.3354/meps338081
https://doi.org/10.3354/meps248067
https://linkinghub.elsevier.com/retrieve/pii/S0967063706001713
https://linkinghub.elsevier.com/retrieve/pii/S0967063706001713
https://doi.org/10.1016/j.dsr.2006.06.005
https://www.nature.com/articles/ngeo1273
https://doi.org/10.1038/ngeo1273
https://bg.copernicus.org/articles/10/3559/2013/
https://bg.copernicus.org/articles/10/3559/2013/
https://doi.org/10.5194/bg-10-3559-2013
https://acp.copernicus.org/articles/5/2497/2005/
https://acp.copernicus.org/articles/5/2497/2005/
https://doi.org/10.5194/acp-5-2497-2005
https://linkinghub.elsevier.com/retrieve/pii/S0278434304002614
https://doi.org/10.1016/j.csr.2004.10.003
https://linkinghub.elsevier.com/retrieve/pii/S0304420307001314
https://doi.org/10.1016/j.marchem.2007.06.003
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-7652.2010.00519.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-7652.2010.00519.x
https://doi.org/10.1111/j.1467-7652.2010.00519.x
http://doi.wiley.com/10.1029/1999GB900100
https://doi.org/10.1029/1999GB900100
http://doi.wiley.com/10.1029/2011GL050778
https://doi.org/10.1029/2011GL050778
http://journals.ametsoc.org/doi/10.1175/1520-0485(2004)034\T1\textless {}0888:TTSOTU\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0485(2004)034\T1\textless {}0888:TTSOTU\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0485(2004)034\T1\textless {}0888:TTSOTU\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0485(2004)034\T1\textless {}0888:TTSOTU\T1\textgreater {}2.0.CO;2
http://openurl.ingenta.com/content/xref?genre=article&issn=0022-2402&volume=66&issue=5&spage=589
http://openurl.ingenta.com/content/xref?genre=article&issn=0022-2402&volume=66&issue=5&spage=589

Croco Documentation, Release 2.0.0

openurl.ingenta.com/content/xref?genre=article&issn=0022-2402&volume=66&issue=5&spage=589 (vis-
ited on 2023-06-21), doi:10.1357/002224008787536790.

[99] P. Marchesiello and P. Estrade. Upwelling limitation by onshore geostrophic flow. Journal of Ma-
rine Research, 68(1):37–62, January 2010. URL: http://www.ingentaconnect.com/content/10.1357/
002224010793079004 (visited on 2023-06-21), doi:10.1357/002224010793079004.

[100] John P. Boyd. Equatorial Solitary Waves. Part I: Rossby Solitons. Journal of Physical Oceanogra-
phy, 10(11):1699–1717, November 1980. URL: http://journals.ametsoc.org/doi/10.1175/1520-0485(1980)
010\T1\textless{}1699:ESWPIR\T1\textgreater{}2.0.CO;2 (visited on 2023-06-21), doi:10.1175/1520-
0485(1980)010<1699:ESWPIR>2.0.CO;2.

[101] William Carlisle Thacker. Some exact solutions to the nonlinear shallow-water wave equations. Jour-
nal of Fluid Mechanics, 107(-1):499, June 1981. URL: http://www.journals.cambridge.org/abstract_
S0022112081001882 (visited on 2023-06-21), doi:10.1017/S0022112081001882.

[102] James C. McWilliams and Glenn R. Flierl. On the Evolution of Isolated, Nonlinear Vortices. Jour-
nal of Physical Oceanography, 9(6):1155–1182, November 1979. URL: http://journals.ametsoc.org/doi/
10.1175/1520-0485(1979)009\T1\textless{}1155:OTEOIN\T1\textgreater{}2.0.CO;2 (visited on 2023-06-
21), doi:10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2.

[103] Emanuele Di Lorenzo, William R. Young, and Stefan Llewellyn Smith. Numerical and Analyti-
cal Estimates of M2 Tidal Conversion at Steep Oceanic Ridges. Journal of Physical Oceanography,
36(6):1072–1084, June 2006. URL: http://journals.ametsoc.org/doi/10.1175/JPO2880.1 (visited on 2023-
06-21), doi:10.1175/JPO2880.1.

[104] B. Weir, Y. Uchiyama, E. M. Lane, J. M. Restrepo, and J. C. McWilliams. A vortex force anal-
ysis of the interaction of rip currents and surface gravity waves. Journal of Geophysical Research,
116(C5):C05001, May 2011. URL: http://doi.wiley.com/10.1029/2010JC006232 (visited on 2023-06-21),
doi:10.1029/2010JC006232.

[105] Patrick Marchesiello, Francis Auclair, Laurent Debreu, James McWilliams, Rafael Almar, Rachid Benshila,
and Franck Dumas. Tridimensional nonhydrostatic transient rip currents in a wave-resolving model. Ocean
Modelling, 163:101816, July 2021. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500321000676
(visited on 2023-06-21), doi:10.1016/j.ocemod.2021.101816.

[106] Patrick Marchesiello, Julien Chauchat, Hassan Shafiei, Rafael Almar, Rachid Benshila, Franck Dumas, and
Laurent Debreu. 3D wave-resolving simulation of sandbar migration. Ocean Modelling, 180:102127, De-
cember 2022. URL: https://linkinghub.elsevier.com/retrieve/pii/S146350032200141X (visited on 2023-06-
21), doi:10.1016/j.ocemod.2022.102127.

[107] Hervé Michallet, B. Gerben Ruessink, Mariana Vieira Lima Matias da Rocha, Anouk de Bakker, Dominic A.
van Der A, Andrea Ruju, Paulo A. Silva, Nadia Sénéchal, Vincent Marieu, Marion Tissier, Rafael Almar,
Tiago Abreu, Florent Birrien, Laure Vignal, Eric Barthélemy, Dominique Mouazé, Rodrigo Cienfuegos,
and Peter Wellens. GLOBEX: Wave dynamics on a shallow sloping beach. In HYDRALAB IV Joint User
Meeting, Lisbon, July 2014. Lisbonne, Portugal, July 2014. URL: https://hal.science/hal-01084718.

[108] XinJian Chen. A fully hydrodynamic model for three-dimensional, free-surface flows. International Journal
for Numerical Methods in Fluids, 42(9):929–952, July 2003. URL: https://onlinelibrary.wiley.com/doi/10.
1002/fld.557 (visited on 2023-06-21), doi:10.1002/fld.557.

[109] J. O. Shin, S. B. Dalziel, and P. F. Linden. Gravity currents produced by lock exchange. Jour-
nal of Fluid Mechanics, 521:1–34, December 2004. URL: http://www.journals.cambridge.org/abstract_
S002211200400165X (visited on 2023-06-21), doi:10.1017/S002211200400165X.

[110] Mehmet Ilıcak, Alistair J. Adcroft, Stephen M. Griffies, and Robert W. Hallberg. Spurious di-
aneutral mixing and the role of momentum closure. Ocean Modelling, 45-46:37–58, January
2012. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500311001685 (visited on 2023-06-21),
doi:10.1016/j.ocemod.2011.10.003.

[111] D. A. Horn, J. Imberger, and G. N. Ivey. The degeneration of large-scale interfacial grav-
ity waves in lakes. Journal of Fluid Mechanics, 434:181–207, May 2001. URL: https://www.
cambridge.org/core/product/identifier/S0022112001003536/type/journal_article (visited on 2023-06-21),
doi:10.1017/S0022112001003536.

386 Bibliography

http://openurl.ingenta.com/content/xref?genre=article&issn=0022-2402&volume=66&issue=5&spage=589
http://openurl.ingenta.com/content/xref?genre=article&issn=0022-2402&volume=66&issue=5&spage=589
https://doi.org/10.1357/002224008787536790
http://www.ingentaconnect.com/content/10.1357/002224010793079004
http://www.ingentaconnect.com/content/10.1357/002224010793079004
https://doi.org/10.1357/002224010793079004
http://journals.ametsoc.org/doi/10.1175/1520-0485(1980)010\T1\textless {}1699:ESWPIR\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0485(1980)010\T1\textless {}1699:ESWPIR\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0485(1980)010\T1\textless {}1699:ESWPIR\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0485(1980)010\T1\textless {}1699:ESWPIR\T1\textgreater {}2.0.CO;2
http://www.journals.cambridge.org/abstract_S0022112081001882
http://www.journals.cambridge.org/abstract_S0022112081001882
https://doi.org/10.1017/S0022112081001882
http://journals.ametsoc.org/doi/10.1175/1520-0485(1979)009\T1\textless {}1155:OTEOIN\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0485(1979)009\T1\textless {}1155:OTEOIN\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0485(1979)009\T1\textless {}1155:OTEOIN\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/JPO2880.1
https://doi.org/10.1175/JPO2880.1
http://doi.wiley.com/10.1029/2010JC006232
https://doi.org/10.1029/2010JC006232
https://linkinghub.elsevier.com/retrieve/pii/S1463500321000676
https://doi.org/10.1016/j.ocemod.2021.101816
https://linkinghub.elsevier.com/retrieve/pii/S146350032200141X
https://doi.org/10.1016/j.ocemod.2022.102127
https://hal.science/hal-01084718
https://onlinelibrary.wiley.com/doi/10.1002/fld.557
https://onlinelibrary.wiley.com/doi/10.1002/fld.557
https://doi.org/10.1002/fld.557
http://www.journals.cambridge.org/abstract_S002211200400165X
http://www.journals.cambridge.org/abstract_S002211200400165X
https://doi.org/10.1017/S002211200400165X
https://linkinghub.elsevier.com/retrieve/pii/S1463500311001685
https://doi.org/10.1016/j.ocemod.2011.10.003
https://www.cambridge.org/core/product/identifier/S0022112001003536/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112001003536/type/journal_article
https://doi.org/10.1017/S0022112001003536

Croco Documentation, Release 2.0.0

[112] Jared Penney, Yves Morel, Peter Haynes, Francis Auclair, and Cyril Nguyen. Diapycnal mixing of passive
tracers by Kelvin–Helmholtz instabilities. Journal of Fluid Mechanics, 900:A26, October 2020. URL: https:
//www.cambridge.org/core/product/identifier/S0022112020004838/type/journal_article (visited on 2023-
06-21), doi:10.1017/jfm.2020.483.

[113] Wen Long, James T. Kirby, and Zhiyu Shao. A numerical scheme for morphological bed level calcula-
tions. Coastal Engineering, 55(2):167–180, February 2008. URL: https://linkinghub.elsevier.com/retrieve/
pii/S0378383907001068 (visited on 2023-06-21), doi:10.1016/j.coastaleng.2007.09.009.

[114] Christopher R. Sherwood, Alfredo L. Aretxabaleta, Courtney K. Harris, J. Paul Rinehimer, Romaric Verney,
and Bénédicte Ferré. Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6)
implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST
r1234). Geoscientific Model Development, 11(5):1849–1871, May 2018. URL: https://gmd.copernicus.org/
articles/11/1849/2018/ (visited on 2023-06-21), doi:10.5194/gmd-11-1849-2018.

[115] Thomas Kilpatrick, Niklas Schneider, and Bo Qiu. Boundary Layer Convergence Induced by Strong
Winds across a Midlatitude SST Front*. Journal of Climate, 27(4):1698–1718, February 2014. URL:
http://journals.ametsoc.org/doi/10.1175/JCLI-D-13-00101.1 (visited on 2022-02-09), doi:10.1175/JCLI-
D-13-00101.1.

[116] Michael A. Spall. Midlatitude Wind Stress–Sea Surface Temperature Coupling in the Vicinity of Oceanic
Fronts. Journal of Climate, 20(15):3785–3801, August 2007. URL: http://journals.ametsoc.org/doi/10.
1175/JCLI4234.1 (visited on 2022-02-09), doi:10.1175/JCLI4234.1.

[117] Alex Ayet and Jean-Luc Redelsperger. An analytical study of the atmospheric boundary-layer
flow and divergence over an SST front. Quarterly Journal of the Royal Meteorological Society,
145(723):2549–2567, July 2019. URL: https://onlinelibrary.wiley.com/doi/10.1002/qj.3578 (visited on
2022-03-31), doi:10.1002/qj.3578.

[118] Florian Lemarié, Guillaume Samson, Jean-Luc Redelsperger, Hervé Giordani, Théo Brivoal, and Gurvan
Madec. A simplified atmospheric boundary layer model for an improved representation of air–sea interac-
tions in eddying oceanic models: implementation and first evaluation in NEMO (4.0). Geoscientific Model
Development, 14(1):543–572, January 2021. URL: https://gmd.copernicus.org/articles/14/543/2021/ (vis-
ited on 2021-04-08), doi:10.5194/gmd-14-543-2021.

[119] Florian Ganthy, Laura Soissons, Pierre-Guy Sauriau, Romaric Verney, and Aldo Sottolichio. Effects of
short flexible seagrass zostera noltei on flow, erosion and deposition processes determined using flume
experiments. Sedimentology, 62(4):997–1023, 2015. URL: https://archimer.ifremer.fr/doc/00244/35507/,
doi:https://doi.org/10.1111/sed.12170.

[120] Florian Ganthy. Rôle des herbiers de zostères (Zostera noltii) sur la dynamique sédimentaire du Bassin
d'Arcachon. PhD thesis, Universté de Bordeaux 1, 12 2011. URL: https://archimer.ifremer.fr/doc/00060/
17170/.

[121] George L. Mellor and Tetsuji Yamada. A Hierarchy of Turbulence Closure Models for Planetary Boundary
Layers. Journal of the Atmospheric Sciences, 31(7):1791–1806, October 1974. URL: http://journals.
ametsoc.org/doi/10.1175/1520-0469(1974)031\T1\textless{}1791:AHOTCM\T1\textgreater{}2.0.CO;2
(visited on 2023-06-21), doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

[122] George Mellor. The Three-Dimensional Current and Surface Wave Equations. Journal of Physi-
cal Oceanography, 33(9):1978–1989, September 2003. URL: http://journals.ametsoc.org/doi/10.1175/
1520-0485(2003)033\T1\textless{}1978:TTCASW\T1\textgreater{}2.0.CO;2 (visited on 2023-06-21),
doi:10.1175/1520-0485(2003)033<1978:TTCASW>2.0.CO;2.

[123] W. P. Budgell. Numerical simulation of ice-ocean variability in the Barents Sea region: Towards dynamical
downscaling. Ocean Dynamics, 55(3-4):370–387, December 2005. URL: http://link.springer.com/10.1007/
s10236-005-0008-3 (visited on 2023-06-21), doi:10.1007/s10236-005-0008-3.

[124] James A. Carton. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation
(SODA) ocean reanalysis. Journal of Geophysical Research, 110(C9):C09006, 2005. URL: http://doi.wiley.
com/10.1029/2004JC002817 (visited on 2023-06-21), doi:10.1029/2004JC002817.

[125] Jean-Michel Lellouche, Eric Greiner, Romain Bourdallé-Badie, Gilles Garric, Angelique Melet, Marie
Drévillon, Clément Bricaud, Mathieu Hamon, Olivier Le Galloudec, Charly Regnier, Tony Candela,

Bibliography 387

https://www.cambridge.org/core/product/identifier/S0022112020004838/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112020004838/type/journal_article
https://doi.org/10.1017/jfm.2020.483
https://linkinghub.elsevier.com/retrieve/pii/S0378383907001068
https://linkinghub.elsevier.com/retrieve/pii/S0378383907001068
https://doi.org/10.1016/j.coastaleng.2007.09.009
https://gmd.copernicus.org/articles/11/1849/2018/
https://gmd.copernicus.org/articles/11/1849/2018/
https://doi.org/10.5194/gmd-11-1849-2018
http://journals.ametsoc.org/doi/10.1175/JCLI-D-13-00101.1
https://doi.org/10.1175/JCLI-D-13-00101.1
https://doi.org/10.1175/JCLI-D-13-00101.1
http://journals.ametsoc.org/doi/10.1175/JCLI4234.1
http://journals.ametsoc.org/doi/10.1175/JCLI4234.1
https://doi.org/10.1175/JCLI4234.1
https://onlinelibrary.wiley.com/doi/10.1002/qj.3578
https://doi.org/10.1002/qj.3578
https://gmd.copernicus.org/articles/14/543/2021/
https://doi.org/10.5194/gmd-14-543-2021
https://archimer.ifremer.fr/doc/00244/35507/
https://doi.org/https://doi.org/10.1111/sed.12170
https://archimer.ifremer.fr/doc/00060/17170/
https://archimer.ifremer.fr/doc/00060/17170/
http://journals.ametsoc.org/doi/10.1175/1520-0469(1974)031\T1\textless {}1791:AHOTCM\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0469(1974)031\T1\textless {}1791:AHOTCM\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0469(1974)031\T1\textless {}1791:AHOTCM\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0485(2003)033\T1\textless {}1978:TTCASW\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0485(2003)033\T1\textless {}1978:TTCASW\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0485(2003)033\T1\textless {}1978:TTCASW\T1\textgreater {}2.0.CO;2
http://link.springer.com/10.1007/s10236-005-0008-3
http://link.springer.com/10.1007/s10236-005-0008-3
https://doi.org/10.1007/s10236-005-0008-3
http://doi.wiley.com/10.1029/2004JC002817
http://doi.wiley.com/10.1029/2004JC002817
https://doi.org/10.1029/2004JC002817

Croco Documentation, Release 2.0.0

Charles-Emmanuel Testut, Florent Gasparin, Giovanni Ruggiero, Mounir Benkiran, Yann Drillet, and
Le Traon Pierre-Yves. Frontiers In Earth Science, 2021. doi:https://doi.org/10.3389/feart.2021.698876.

[126] Gary D. Egbert and Svetlana Y. Erofeeva. Efficient Inverse Modeling of Barotropic Ocean Tides. Journal
of Atmospheric and Oceanic Technology, 19(2):183–204, February 2002. URL: http://journals.ametsoc.
org/doi/10.1175/1520-0426(2002)019\T1\textless{}0183:EIMOBO\T1\textgreater{}2.0.CO;2 (visited on
2023-06-21), doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

[127] Wessel, P. and W. H. F. Smith. A global self-consistent, hierarchical, high-resolution shoreline database. J.
Geophys. Res., 101():8741–8743, 1996.

[128] Kenneth S. Casey and Peter Cornillon. A Comparison of Satellite and In Situ–Based Sea Surface Tempera-
ture Climatologies. Journal of Climate, 12(6):1848–1863, June 1999. URL: http://journals.ametsoc.org/doi/
10.1175/1520-0442(1999)012\T1\textless{}1848:ACOSAI\T1\textgreater{}2.0.CO;2 (visited on 2023-06-
21), doi:10.1175/1520-0442(1999)012<1848:ACOSAI>2.0.CO;2.

[129] Walter H. F. Smith and David T. Sandwell. Global Sea Floor Topography from Satellite Altimetry and Ship
Depth Soundings. Science, 277(5334):1956–1962, September 1997. URL: https://www.science.org/doi/10.
1126/science.277.5334.1956 (visited on 2023-06-21), doi:10.1126/science.277.5334.1956.

[130] O. Aumont and L. Bopp. Globalizing results from ocean in situ iron fertilization studies: GLOBALIZING
IRON FERTILIZATION. Global Biogeochemical Cycles, 20(2):n/a–n/a, June 2006. URL: http://doi.wiley.
com/10.1029/2005GB002591 (visited on 2023-06-21), doi:10.1029/2005GB002591.

[131] Marchesiello, Lefèvre, Pierrick Penven, Florian Lemarié, Laurent Debreu, Pascal Douillet, A. Vega,
P. Derex, Vincent Echevin, and Boris Dewitte. Keys to affordable regional marine forecast systems. In 2008.
URL: https://api.semanticscholar.org/CorpusID:135117833.

[132] R. A. Flather and A. M. Davies. Note on a preliminary scheme for storm surge prediction using
numerical models. Quarterly Journal of the Royal Meteorological Society, 102(431):123–132, Jan-
uary 1976. URL: https://onlinelibrary.wiley.com/doi/10.1002/qj.49710243110 (visited on 2023-06-21),
doi:10.1002/qj.49710243110.

[133] Jie Yu. Effects of wave-current interaction on rip currents. Journal of Geophysical Research,
108(C3):3088, 2003. URL: http://doi.wiley.com/10.1029/2001JC001105 (visited on 2023-06-21),
doi:10.1029/2001JC001105.

388 Bibliography

https://doi.org/https://doi.org/10.3389/feart.2021.698876
http://journals.ametsoc.org/doi/10.1175/1520-0426(2002)019\T1\textless {}0183:EIMOBO\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0426(2002)019\T1\textless {}0183:EIMOBO\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0426(2002)019\T1\textless {}0183:EIMOBO\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0442(1999)012\T1\textless {}1848:ACOSAI\T1\textgreater {}2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0442(1999)012\T1\textless {}1848:ACOSAI\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012\T1\textless {}1848:ACOSAI\T1\textgreater {}2.0.CO;2
https://www.science.org/doi/10.1126/science.277.5334.1956
https://www.science.org/doi/10.1126/science.277.5334.1956
https://doi.org/10.1126/science.277.5334.1956
http://doi.wiley.com/10.1029/2005GB002591
http://doi.wiley.com/10.1029/2005GB002591
https://doi.org/10.1029/2005GB002591
https://api.semanticscholar.org/CorpusID:135117833
https://onlinelibrary.wiley.com/doi/10.1002/qj.49710243110
https://doi.org/10.1002/qj.49710243110
http://doi.wiley.com/10.1029/2001JC001105
https://doi.org/10.1029/2001JC001105

	Model Documentation
	Governing Equations
	Primitive Equations
	Equations in Cartesian coordinates
	Equations in terrain-following coordinates

	Quasi-Hydrostatic Equations
	Equations in Cartesian coordinate

	Wave-averaged Equations
	Equations in Cartesian coordinates
	Embedded wave model
	Breaking acceleration and bottom streaming
	Formulation of wave energy dissipation

	Non-Hydrostatic, Non-Boussinesq Equations

	Model variables
	Domain variables (grid.h)
	Barotropic variables (ocean2d.h)
	Tri-dimensionnal variables (ocean3d.h)
	Surface forcing (forces.h)

	Grid and Coordinates
	Vertical Grid parameters
	Grid staggering
	Wetting-Drying

	Numerics
	Overview
	Time Stepping
	3D momentum and tracers
	Tracers-momentum coupling
	Barotropic mode
	Baroclinic-barotropic coupling
	M2_FILTER_POWER option
	M2_FILTER_NONE option

	Stability constraints

	Advection Schemes
	Lateral Momentum Advection
	Lateral Tracer advection
	Vertical Momentum advection
	Vertical Tracer advection
	Adaptively implicit vertical advection
	Numerical details on advection schemes
	Linear advection schemes
	Split upwind schemes
	Splines reconstruction and Akima 4th-order schemes
	Adaptively implicit vertical advection
	Total variation bounded scheme (WENO5)
	Total variation diminishing scheme
	Upwinding of nonlinear terms

	Pressure gradient
	Equation of State
	Wetting and Drying
	Non-Boussinesq Solver

	Parametrizations
	Vertical mixing parametrizations
	Analytical definition
	BVF mixing
	K-profile parametrization
	Generic length scale

	Horizontal diffusion
	Lateral Momentum Mixing
	Lateral Tracer Mixing

	Bottom friction

	Parallelisation
	Parallel strategy overview
	OpenMP (#define OPENMP)
	MPI (#define MPI)

	Variable placement for staggered grids
	Loops and indexes for staggered grids
	Parallel/sequential correspondence:
	Decomposition:

	Halo layer exchanges
	Dealing with outputs
	Run with GPU
	General implementation
	Data directives
	3D loop tunning with preprocessing by compilation

	Atmospheric Surface Boundary Layer
	Open boundaries conditions
	OBC
	Sponge Layer
	Nudging layers
	Lateral forcing
	CLIMATOLOGY strategy
	BRY strategy

	Rivers
	Tides
	Nesting Capabilities
	Other modules : sediment models, flow-obstruction models, biology models
	Bottom Boundary Layer model
	Sediment models
	USGS Sediment Model
	Sediment bed
	Suspended-sediment transport
	Bedload transport
	Meyer-Peter Müller : Transport by currents
	van der A (2013): Transport by nonlinear waves

	Morphology
	Sediment Density

	MUSTANG Sediment model
	MUSTANG presentation
	MUSTANG user guide
	Input file : croco.in
	Input file : param.h
	Input file : Substance namelist
	Input file : Mustang namelist
	Input file : Initialization of the sediment cover
	Input file : Wave
	Input file : Solid discharge in rivers
	Input file : submassbalance definition of borders and budget areas
	Output options
	Available CPP keys

	MUSTANG technical documentation
	Overall architecture of the module
	Initialization
	Temporal loop
	Roughness length
	Shear stress
	Settling
	Flocculation with FLOCMOD
	Erosion process
	Deposit process
	Consolidation
	Diffusion within sediment and at interface
	Bioturbation
	Suspended sediment concentration effect on density
	Morphodynamic

	Available online diagnosis
	SUBMASSBALANCE

	FAQ and known issues
	Coarse sediment in MUSTANG
	Not yet implemented features

	OBSTRUCTIONS module : flow in presence of various obstructions
	Introduction
	Inputs files
	Obstruction main parameter file
	Obstruction variable specific characteristics file
	Obstruction variable specific vertical distribution file
	Obstruction position file
	Obstruction initialization spatial file
	Obstruction temporal file

	Outputs
	Using CROCO output file
	Using XIOS

	Example

	Biogeochemical models
	Lagrangian floats

	Coupling CROCO with other models
	OASIS philosophy
	OASIS libraries
	Coupling sequence
	Restart files
	Interpolations

	Detailed OASIS implementation
	In CROCO
	In WW3
	In WRF

	Coupled variables
	Coupling with an atmospheric model
	Coupling with a wave model
	Coupling atmosphere and wave models
	Note on momentum flux when coupling 3 models
	Note on coupling with AGRIF

	Grids
	OASIS grid files
	Multiple model grids (nesting case)

	I/O and Online Diagnostics
	Review of test cases
	Basin
	Canyon
	Equator
	Inner Shelf
	River Runoff
	Gravitational/Overflow
	Seamount
	Shelf front
	Equatorial Rossby Wave
	Thacker
	Upwelling
	Baroclinic Vortex
	Internal Tide
	Internal Tide (COMODO)
	Baroclinic Jet
	Plannar Beach
	Rip Current
	Sandbar
	Wave-averaged solution (default)
	Wave-resolved solution (#define NBQ)

	Swash
	Tank
	Acoustic wave
	Gravitational Adjustment
	Internal Soliton
	Kelvin-Helmoltz Instability
	Horizontal tracer advection
	Sediment test cases
	DUNE cases
	DUNE case (default)
	DUNE3D case
	ANA_DUNE case

	SED_TOY cases
	SED_TOY/ROUSE case
	SED_TOY/CONSOLID case
	SED_TOY/RESUSP case

	TIDAL_FLAT case
	FLOCMOD cases
	FLOCMOD 0D – comparison with laboratory experiments [#SED_TOY_FLOC_0D]
	Shear aggregation and binary shear fragmentation only
	Shear aggregation, binary shear fragmentation and floc erosion

	FLOCMOD 1DV [#SED_TOY_FLOC_1D]
	Adding differential settling aggregation
	Adding “low negative mass option” mneg_param = 0.001 g/L.*
	Passing from 15 classes to 8 classes

	Kilpatrick
	Seagrass

	Appendices
	cppdefs.h
	croco.in
	Comparison of ROMS and CROCO versions

	Tutorials
	System requirements
	Disk space
	Compilers and Libraries
	Environment variables

	Download
	Downloading CROCO
	Source code
	External datasets

	Getting other codes (coupling)

	Contents & Architecture
	Architecture
	Contents
	croco
	croco_tools
	Scripts
	UTILITIES
	DATASETS

	Summary of essential steps
	Test Cases
	BASIN
	Set up you own test case

	Regional: Preparing your configuration
	Regional: Preprocessing (Matlab)
	Contents of the croco_tools
	Philosophy of the croco_tools
	Climatological pre-processing
	Interannual pre-processing

	Compiling
	cppdefs.h
	param.h
	jobcomp
	Compilation options
	Tips in case of errors during compilation

	Running the model
	Edit croco.in
	Run the model
	Tips in case of BLOW UP or ERROR

	Increasing the resolution: BENGUELA_VHR
	Running with interannual forcing
	Run after classical interannual pre-processing
	Alternative method: online interpolation of atmospheric bulk forcing

	Running forecasts
	Strategy of Forecast_tools
	Set forecast parameters
	Compiling
	Running the script

	Nesting Tutorial
	Adding Rivers
	Constant flow and concentration
	Variable flow read in a netCDF file and constant concentration
	Variable flow and variable concentration from a netCDF file
	Using a nest

	Adding tides
	Pre-processing (Matlab)
	Compiling
	Running

	Visualization (Matlab)
	Python tools for CROCO
	NBQ Tutorial
	Some important points about Large-Eddy Simulations (LES)
	KH_INST Test Case
	Set up your own NBQ configuration
	NBQ OPTIONS
	Appendix : some words on CROCO-NBQ kernel

	Coupling tutorial
	Summary of steps for coupling
	Compiling in coupled mode
	Compiling OASIS
	Compiling CROCO
	Compiling the TOY model
	Compiling WRF
	Compiling WPS
	Compiling WW3
	Tips in case of errors during compilation

	Simple CROCO-TOY coupled example
	Get necessary files
	Compile
	Prepare the configuration files for a 3-day run
	Prepare OASIS files
	Run the models

	Advanced coupling tutorial
	Coupling tools contents
	Coupling tools philosophy and workflow
	Create your configuration
	Pre-processing for coupled run
	CROCO preprocessing
	WW3 pre-processing
	WW3 GRIDGEN
	Alternative
	Wind, current, and water level forcings

	WRF preprocessing
	Running WPS
	Running real.exe
	Additional pre-processing for coupled runs

	OASIS pre-processing

	Running in COUPLED mode
	CROCO-TOY (wav or atm)
	CROCO-WRF
	CROCO-WW3
	CROCO-WW3-WRF

	Outputs, logs

	Littoral dynamics tutorial
	Realistic coastal configuration
	XIOS
	Tips
	Tips in case of errors during compilation
	TIPS for errors at runtime
	Tips in case of BLOW UP or ERROR
	Others possible errors

	Analytical forcing

	CROCO/MUSTANG tutorial & tips
	Get to know the CROCO/MUSTANG coupling
	Run a test case
	Create your own configuration

	TRAINING 2019: DATARMOR specific
	Getting the good environment
	Creating your work architecture
	DATA FILES
	BASIN configuration for XIOS tutorial
	SOURCES for coupling tutorial

	Ifremer specific
	Croco training in the framework of datarmor
	First step :install
	Getting the good environment
	Creating your work architecture

	Second step: launch a test case
	Third step: set up your own test case
	REALISTIC CONFIGURATION
	Example of coastal configuration
	Build a configuration from scratch
	Preparation of forcing files
	Mesh building with BMGTOOLS
	Build tidal atlas on CROCO grid
	3D Initial and Boundary conditions
	Build a new configuration with CROCO
	Environment and source code
	Edit your configuration parameters files
	Custom you configuration
	Add a source for a river discharge
	Add a real Atmospheric forcing
	Add 3D IC and OBC

	FERRET FACILITY
	GIT FACILITY
	XIOS FACILITY
	XIOS step by step

	Bibliography

